Fix shadowed type annotations of builtins.list #10319
Annotations
1 error and 3 warnings
|
Test flaky files:
src/sage/rings/polynomial/plural.pyx#L0
sage: A.<x,y,z> = FreeAlgebra(QQ, 3) ## line 50 ##
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex') ## line 51 ##
sage: P ## line 53 ##
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {y*x: -x*y}
sage: y*x + 1/2 ## line 56 ##
-x*y + 1/2
sage: A.<x,y,z> = FreeAlgebra(GF(17), 3) ## line 59 ##
sage: P.<x,y,z> = A.g_algebra(relations={y*x:-x*y}, order = 'lex') ## line 60 ##
sage: P ## line 61 ##
Noncommutative Multivariate Polynomial Ring in x, y, z over Finite Field of size 17, nc-relations: {y*x: -x*y}
sage: y*x + 7 ## line 64 ##
-x*y + 7
sage: from sage.matrix.constructor import Matrix ## line 71 ##
sage: c = Matrix(3) ## line 72 ##
sage: c[0,1] = -2 ## line 73 ##
sage: c[0,2] = 1 ## line 74 ##
sage: c[1,2] = 1 ## line 75 ##
sage: d = Matrix(3) ## line 77 ##
sage: d[0, 1] = 17 ## line 78 ##
sage: P = QQ['x','y','z'] ## line 79 ##
sage: c = c.change_ring(P) ## line 80 ##
sage: d = d.change_ring(P) ## line 81 ##
sage: from sage.rings.polynomial.plural import NCPolynomialRing_plural ## line 83 ##
sage: R.<x,y,z> = NCPolynomialRing_plural(QQ, c = c, d = d, order=TermOrder('lex',3),category=Algebras(QQ)) ## line 84 ##
sage: R ## line 85 ##
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {y*x: -2*x*y + 17}
sage: R.term_order() ## line 88 ##
Lexicographic term order
sage: a,b,c = R.gens() ## line 91 ##
sage: f = 57 * a^2*b + 43 * c + 1; f ## line 92 ##
57*x^2*y + 43*z + 1
sage: A.<x,y,z> = FreeAlgebra(QQ, 3) ## line 97 ##
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex') ## line 98 ##
sage: TestSuite(P).run() ## line 99 ##
sage: loads(dumps(P)) is P ## line 100 ##
True
sage: A.<x,y,z> = FreeAlgebra(QQ, 3) ## line 103 ##
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex') ## line 104 ##
sage: P.is_commutative() ## line 105 ##
False
sage: R.<x,y,z> = FreeAlgebra(QQ, 3) ## line 108 ##
sage: P = R.g_algebra(relations={}, order='lex') ## line 109 ##
sage: P.is_commutative() ## line 110 ##
True
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 112 ##
0
sage: A.<x,y,z> = FreeAlgebra(QQ, 3) ## line 157 ##
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}) ## line 158 ##
sage: H is A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}) # indirect doctest ## line 159 ##
True
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 161 ##
0
sage: A.<x,y,z> = FreeAlgebra(QQ, 3) ## line 175 ##
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}) ## line 176 ##
sage: sorted(H.relations().items(), key=str) ## line 177 ##
[(y*x, x*y - z), (z*x, x*z + 2*x), (z*y, y*z - 2*y)]
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 179 ##
0
sage: A.<x,y,z> = FreeAlgebra(QQ, 3) ## line 204 ##
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}) ## line 205 ##
sage: H is A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}) # indirect doctest ## line 206 ##
True
sage: P = A.g_algebra(relations={}, order='lex') ## line 209 ##
sage: P.category() ## line 210 ##
Category of commutative algebras over Rational Field
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 212 ##
0
sage: A.<x,y,z> = FreeAlgebra(QQ, 3) ## line 253 ##
sage: H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}) ## line 254 ##
sage: H._is_category_initialized() ## line 255 ##
True
sage: H.category() ## line 257 ##
Category of algebras over Rational Field
sage: TestSuite(H).run() ## line 259 ##
sage: H.<x,y,z> = A.g_algebra({z*x:x*z+2*x, z*y:y*z-2*y}) ## line 264 ##
sage: x*y == y*x ## line 265 ##
True
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line 267 ##
0
sage: from sage.matrix.constructor import Matrix ## line 294 ##
sage: c0 = Matrix(3) ## line 295 ##
sage: c0[0,1] = -1 ## line 296 ##
sage: c0[0,2] = 1 ## line 297 ##
sage: c0[1,2] = 1 ## line 298 ##
sage: d0 = Matrix(3) ## line 300 ##
sage: d0[0, 1] = 17 ## line 301 ##
sage: P = QQ['x','y','z'] ## line 302 ##
sage: c = c0.change_ring(P) ## line 303 ##
sage: d = d0.change_ring(P) ##
|
|
Test:
src/sage/schemes/curves/plane_curve_arrangement.py#L520
slow doctest:: Test ran for 5.58s cpu, 4.51s wall
Check ran for 0.00s cpu, 0.00s wall
|
|
Test:
src/sage/rings/finite_rings/element_base.pyx#L750
Variable 'a' referenced here was set only in doctest marked '# needs sage.libs.linbox sage.rings.finite_rings'; '# needs sage.libs.ntl sage.rings.finite_rings'; '# needs sage.libs.pari sage.rings.finite_rings'
|
|
Setup Conda environment
The 'defaults' channel might have been added implicitly. If this is intentional, add 'defaults' to the 'channels' list. Otherwise, consider setting 'conda-remove-defaults' to 'true'.
|
Loading