Skip to content

cannot be cast to [Lcom.salesforce.op.stages.impl.feature.TextStats; #504

Open
@vanlinhnguyen

Description

@vanlinhnguyen

Describe the bug
I try to launch a minimal example (Titanic) from a Jupyter hub with Spark 2.4.4, and got the following exception for string features:

Name: java.lang.ClassCastException
Message: [Lcom.salesforce.op.stages.impl.feature.TextStats; cannot be cast to [Lcom.salesforce.op.stages.impl.feature.TextStats;

The unit test in my local repo seems to work well, with the following dependencies:

// sbt-assembly excludes packages tagged "provided" as below
val sparkVersion = "2.4.4"
val scalaTestVersion = "3.0.8"
libraryDependencies ++= Seq(
  "org.scalatest"        %% "scalatest"            % scalaTestVersion,
  "org.apache.spark"     %% "spark-core"           % sparkVersion % "provided",
  "org.apache.spark"     %% "spark-mllib"          % sparkVersion % "provided",
  "org.apache.spark"     %% "spark-sql"            % sparkVersion % "provided",
  "com.salesforce.transmogrifai" %% "transmogrifai-core" % "0.7.0"
)

To Reproduce

object SimpleLauncher {
    def run (inputDf: DataFrame, targetCol: String): Unit = {
        implicit val spark: SparkSession = getSparkSession(false, "Transmogifai Simple Launcher")
        println("Yarn application id: " + spark.sparkContext.getConf.getAppId)
        import spark.implicits._

        // Automated feature engineering
        val (target, features) = FeatureBuilder.fromDataFrame[RealNN](inputDf, response = targetCol)
        val featureVector: FeatureLike[OPVector] = features.transmogrify()

        // Automated feature selection
        val checkedFeatures: FeatureLike[OPVector] = target.sanityCheck(featureVector, checkSample = 1.0, removeBadFeatures = true)

        // Define the model we want to use (here a simple logistic regression) and get the resulting output
        val prediction: FeatureLike[Prediction] = BinaryClassificationModelSelector.withTrainValidationSplit(
            modelTypesToUse = Seq(OpLogisticRegression)
        ).setInput(target, checkedFeatures).getOutput()

        val model: OpWorkflowModel = new OpWorkflow().setInputDataset(inputDf).setResultFeatures(prediction).train()
        println("Model summary:\n" + model.summaryPretty())
    }
}

This work on local:

  test("Titanic simple") {
    import spark.implicits._

    // Read Titanic data as a DataFrame
    val csvFilePath: String = "src/test/resources/data/PassengerDataAll.csv"
    val passengersData: DataFrame = DataReaders.Simple.csvCase[Passenger](path = Option(csvFilePath), key = _.id.toString)
      .readDataset().toDF()
    val truncatedData = passengersData.select("name", "age", "survived")
    truncatedData.show()
    truncatedData.printSchema()
    SimpleLauncher.run(truncatedData, "survived")
  }

While the same doesn't from jupyter hub:

val passengers = spark.read.schema(schema)
   .option("header","true")
   .csv("path_to_csv)

SimpleLauncher.run(passengers, "survived")

Expected behavior

Name: java.lang.ClassCastException
Message: [Lcom.salesforce.op.stages.impl.feature.TextStats; cannot be cast to [Lcom.salesforce.op.stages.impl.feature.TextStats;
StackTrace:   at com.salesforce.op.stages.impl.feature.SmartTextVectorizer.fitFn(SmartTextVectorizer.scala:91)
  at com.salesforce.op.stages.base.sequence.SequenceEstimator.fit(SequenceEstimator.scala:99)
  at com.salesforce.op.stages.base.sequence.SequenceEstimator.fit(SequenceEstimator.scala:57)
  at com.salesforce.op.utils.stages.FitStagesUtil$$anonfun$20.apply(FitStagesUtil.scala:264)
  at com.salesforce.op.utils.stages.FitStagesUtil$$anonfun$20.apply(FitStagesUtil.scala:263)
  at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
  at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
  at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
  at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
  at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
  at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
  at com.salesforce.op.utils.stages.FitStagesUtil$.com$salesforce$op$utils$stages$FitStagesUtil$$fitAndTransformLayer(FitStagesUtil.scala:263)
  at com.salesforce.op.utils.stages.FitStagesUtil$$anonfun$17.apply(FitStagesUtil.scala:226)
  at com.salesforce.op.utils.stages.FitStagesUtil$$anonfun$17.apply(FitStagesUtil.scala:224)
  at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:57)
  at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:66)
  at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:186)
  at com.salesforce.op.utils.stages.FitStagesUtil$.fitAndTransformDAG(FitStagesUtil.scala:224)
  at com.salesforce.op.OpWorkflow.fitStages(OpWorkflow.scala:407)
  at com.salesforce.op.OpWorkflow.train(OpWorkflow.scala:354)
  at launchers.SimpleLauncher$.run(SimpleLauncher.scala:35)

Logs or screenshots
If applicable, add logs or screenshots to help explain your problem.

Additional context
Add any other context about the problem here.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions