@@ -878,10 +878,10 @@ def test_drop_duplicates(self):
878
878
df_dropped = df .drop_duplicates (subset = 'Make' )
879
879
880
880
# Equivalent to pandas in size
881
- self .assertEquals (len (tbl_dropped ), len (df_dropped ))
881
+ self .assertEqual (len (tbl_dropped ), len (df_dropped ))
882
882
# Number of elements in 'Make' column should be same as number of unique elements
883
- self .assertEquals (tbl_dropped ['Make' ].nunique (), len (tbl_dropped ['Make' ]))
884
- self .assertEquals (tbl_dropped ['Make' ].nunique (), len (tbl_dropped ))
883
+ self .assertEqual (tbl_dropped ['Make' ].nunique (), len (tbl_dropped ['Make' ]))
884
+ self .assertEqual (tbl_dropped ['Make' ].nunique (), len (tbl_dropped ))
885
885
886
886
# drop duplicates for multi-element subset
887
887
tbl_dropped_multi = tbl .drop_duplicates (casout = {'replace' : True ,
@@ -890,7 +890,7 @@ def test_drop_duplicates(self):
890
890
df_dropped_multi = df .drop_duplicates (subset = ['Origin' , 'Type' ])
891
891
892
892
# Equivalent to pandas in size
893
- self .assertEquals (len (tbl_dropped_multi ), len (df_dropped_multi ))
893
+ self .assertEqual (len (tbl_dropped_multi ), len (df_dropped_multi ))
894
894
895
895
# We need some rows where all values for each col are duplicate
896
896
nDuplicates = 7
@@ -915,8 +915,8 @@ def test_drop_duplicates(self):
915
915
'name' : 'drop-test-4' })
916
916
917
917
# Make sure that the correct amount of rows were dropped
918
- self .assertEquals (len (tbl ), len (tbl_dropped_all ))
919
- self .assertEquals (len (duplicate_table ), len (tbl_dropped_all ) + nDuplicates )
918
+ self .assertEqual (len (tbl ), len (tbl_dropped_all ))
919
+ self .assertEqual (len (duplicate_table ), len (tbl_dropped_all ) + nDuplicates )
920
920
921
921
def test_column_iter (self ):
922
922
df = self .get_cars_df ()
@@ -3314,23 +3314,23 @@ def test_nunique(self):
3314
3314
tbl_nunique = tbl .nunique ()
3315
3315
df_nunique = df .nunique ()
3316
3316
# Length of Series are equal
3317
- self .assertEquals (len (tbl_nunique ), len (df_nunique ))
3317
+ self .assertEqual (len (tbl_nunique ), len (df_nunique ))
3318
3318
# Indices are equal
3319
3319
self .assertTrue (sorted (tbl_nunique ) == sorted (df_nunique ))
3320
3320
# Values are equal
3321
3321
for col in tbl .columns :
3322
- self .assertEquals (tbl_nunique [col ], df_nunique [col ])
3322
+ self .assertEqual (tbl_nunique [col ], df_nunique [col ])
3323
3323
3324
3324
# Now counting NaN
3325
3325
tbl_nunique_nan = tbl .nunique (dropna = False )
3326
3326
df_nunique_nan = df .nunique (dropna = False )
3327
3327
# Length of Series are equal
3328
- self .assertEquals (len (tbl_nunique_nan ), len (df_nunique_nan ))
3328
+ self .assertEqual (len (tbl_nunique_nan ), len (df_nunique_nan ))
3329
3329
# Indices are equal
3330
- self .assertEquals (sorted (tbl_nunique_nan ), sorted (df_nunique_nan ))
3330
+ self .assertEqual (sorted (tbl_nunique_nan ), sorted (df_nunique_nan ))
3331
3331
# Values are equal
3332
3332
for col in tbl .columns :
3333
- self .assertEquals (tbl_nunique_nan [col ], df_nunique_nan [col ])
3333
+ self .assertEqual (tbl_nunique_nan [col ], df_nunique_nan [col ])
3334
3334
3335
3335
def test_column_unique (self ):
3336
3336
df = self .get_cars_df ()
0 commit comments