-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
80 lines (64 loc) · 2.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from flask import Flask, escape, request, render_template, send_file, redirect, make_response, send_from_directory, flash
from npa import *
# reset()
app = Flask(__name__)
app.secret_key = b'_5#y2L"F4Q8z\n\xec]/'
@app.route('/')
def hello_world():
return redirect("/appUpload")
@app.route('/appUpload')
def appUpload():
loan_file = get_stats()
return render_template('app_upload.html', loan_file = loan_file)
@app.route('/appUpdate', methods=['POST', 'GET'])
def appUpdate():
file = request.files['fileupload']
file1 = request.files['fileupload1']
file2 = request.files['fileupload2']
file.save('./dataset/appraisal.csv')
file1.save('./dataset/application.csv')
file2.save('./dataset/loan_performance.csv')
if len(os.listdir('./model1')):
os.remove('./model1/model.pkl')
if len(os.listdir('./model2')):
os.remove('./model2/model.pkl')
save_app_data('./dataset/appraisal.csv','./dataset/application.csv','./dataset/loan_performance.csv')
return redirect("/appUpload")
@app.route('/npaUpload')
def npaUpload():
return render_template('npa_upload.html')
@app.route('/npaUpdate', methods=['POST', 'GET'])
def npaUpdate():
file = request.files['fileupload']
# print(file)
file.save('./temp_.csv')
update_default_data('./temp_.csv')
return redirect("/appUpload")
@app.route('/getRisk')
def getRisk():
return render_template("get_risk.html")
@app.route('/computeRisk', methods=['POST', 'GET'])
def computeRisk():
file = request.files['fileupload']
df = pd.read_csv('./newApplicant.csv')
X,flag = return_applicant(df)
scores = []
for i in X:
if flag == 0:
loaded_model = pickle.load(open('./model2/model.pkl', 'rb'))
else:
loaded_model = pickle.load(open('./model1/model.pkl', 'rb'))
score = loaded_model.predict_proba(i.reshape(1,-1))
scores.append(max_value(score[0]))
flash("Risk score for the applicant is: " + str(max_value(score[0])))
ids = df['ApplicationId']
data = {'ApplicationID':ids, 'Risk Scores':scores}
df = pd.DataFrame(data)
df.to_csv('riskScores.csv',index=False)
return redirect("/getRisk")
@app.route('/reset')
def reset_():
reset()
return redirect("/appUpload")
if __name__ == '__main__':
app.run(debug=True)