Skip to content

Commit 1f82916

Browse files
authored
refactor: rename inference trainer classes (#1605)
* fix: rename LikelihoodEstimator to LikelihoodEstimatorTrainer * fix: rename PosteriorEstimator to PosteriorEstimatorTrainer * fix: Rename RatioEstimator to RatioEstimatorTrainer * fix: Update incorrect import for RatioEstimator
1 parent a99d582 commit 1f82916

File tree

14 files changed

+26
-26
lines changed

14 files changed

+26
-26
lines changed

sbi/diagnostics/misspecification.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111
import torch.nn as nn
1212
from torch import Tensor
1313

14-
from sbi.inference.trainers.npe.npe_base import PosteriorEstimator
14+
from sbi.inference.trainers.npe.npe_base import PosteriorEstimatorTrainer
1515
from sbi.neural_nets.estimators import UnconditionalDensityEstimator
1616
from sbi.utils.metrics import check_c2st
1717

@@ -113,7 +113,7 @@ def calculate_p_misspecification(
113113
def calc_misspecification_mmd(
114114
x_obs: Tensor,
115115
x: Tensor,
116-
inference: Optional[PosteriorEstimator] = None,
116+
inference: Optional[PosteriorEstimatorTrainer] = None,
117117
mode: str = "x_space",
118118
n_shuffle: int = 1_000,
119119
max_samples: int = 1_000,

sbi/inference/trainers/nle/mnle.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,14 +8,14 @@
88

99
from sbi.inference.posteriors import MCMCPosterior, RejectionPosterior, VIPosterior
1010
from sbi.inference.potentials import likelihood_estimator_based_potential
11-
from sbi.inference.trainers.nle.nle_base import LikelihoodEstimator
11+
from sbi.inference.trainers.nle.nle_base import LikelihoodEstimatorTrainer
1212
from sbi.neural_nets.estimators import MixedDensityEstimator
1313
from sbi.sbi_types import TensorboardSummaryWriter, TorchModule
1414
from sbi.utils.sbiutils import del_entries
1515
from sbi.utils.user_input_checks import check_prior
1616

1717

18-
class MNLE(LikelihoodEstimator):
18+
class MNLE(LikelihoodEstimatorTrainer):
1919
"""Mixed Neural Likelihood Estimation (MNLE) [1].
2020
2121
Like NLE, but designed to be applied to data with mixed types, e.g., continuous

sbi/inference/trainers/nle/nle_a.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,12 +5,12 @@
55

66
from torch.distributions import Distribution
77

8-
from sbi.inference.trainers.nle.nle_base import LikelihoodEstimator
8+
from sbi.inference.trainers.nle.nle_base import LikelihoodEstimatorTrainer
99
from sbi.sbi_types import TensorboardSummaryWriter
1010
from sbi.utils.sbiutils import del_entries
1111

1212

13-
class NLE_A(LikelihoodEstimator):
13+
class NLE_A(LikelihoodEstimatorTrainer):
1414
"""Neural Likelihood Estimation (NLE) as in Papamakarios et al. (2019) [1].
1515
1616
[1] Sequential Neural Likelihood: Fast Likelihood-free Inference with

sbi/inference/trainers/nle/nle_base.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
from sbi.utils.torchutils import assert_all_finite
2727

2828

29-
class LikelihoodEstimator(NeuralInference, ABC):
29+
class LikelihoodEstimatorTrainer(NeuralInference, ABC):
3030
def __init__(
3131
self,
3232
prior: Optional[Distribution] = None,
@@ -82,7 +82,7 @@ def append_simulations(
8282
from_round: int = 0,
8383
algorithm: str = "SNLE",
8484
data_device: Optional[str] = None,
85-
) -> "LikelihoodEstimator":
85+
) -> "LikelihoodEstimatorTrainer":
8686
r"""Store parameters and simulation outputs to use them for later training.
8787
8888
Data are stored as entries in lists for each type of variable (parameter/data).

sbi/inference/trainers/npe/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
from sbi.inference.trainers.npe.mnpe import MNPE # noqa: F401
22
from sbi.inference.trainers.npe.npe_a import NPE_A # noqa: F401
33
from sbi.inference.trainers.npe.npe_b import NPE_B # noqa: F401
4-
from sbi.inference.trainers.npe.npe_base import PosteriorEstimator # noqa: F401
4+
from sbi.inference.trainers.npe.npe_base import PosteriorEstimatorTrainer # noqa: F401
55
from sbi.inference.trainers.npe.npe_c import NPE_C # noqa: F401
66

77
SNPE_A = NPE_A

sbi/inference/trainers/npe/npe_a.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313
from torch.distributions import Distribution, MultivariateNormal
1414

1515
from sbi.inference.posteriors.direct_posterior import DirectPosterior
16-
from sbi.inference.trainers.npe.npe_base import PosteriorEstimator
16+
from sbi.inference.trainers.npe.npe_base import PosteriorEstimatorTrainer
1717
from sbi.neural_nets.estimators.base import ConditionalDensityEstimator
1818
from sbi.sbi_types import TensorboardSummaryWriter, TorchModule
1919
from sbi.utils import torchutils
@@ -26,7 +26,7 @@
2626
from sbi.utils.torchutils import BoxUniform, assert_all_finite, atleast_2d
2727

2828

29-
class NPE_A(PosteriorEstimator):
29+
class NPE_A(PosteriorEstimatorTrainer):
3030
r"""Neural Posterior Estimation algorithm as in Papamakarios et al. (2016) [1].
3131
3232
[1] *Fast epsilon-free Inference of Simulation Models with Bayesian

sbi/inference/trainers/npe/npe_b.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,13 +8,13 @@
88
from torch.distributions import Distribution
99

1010
import sbi.utils as utils
11-
from sbi.inference.trainers.npe.npe_base import PosteriorEstimator
11+
from sbi.inference.trainers.npe.npe_base import PosteriorEstimatorTrainer
1212
from sbi.neural_nets.estimators.shape_handling import reshape_to_sample_batch_event
1313
from sbi.sbi_types import TensorboardSummaryWriter
1414
from sbi.utils.sbiutils import del_entries
1515

1616

17-
class NPE_B(PosteriorEstimator):
17+
class NPE_B(PosteriorEstimatorTrainer):
1818
r"""Neural Posterior Estimation algorithm (NPE-B) as in Lueckmann et al. (2017) [1].
1919
2020
[1] *Flexible statistical inference for mechanistic models of neural

sbi/inference/trainers/npe/npe_base.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@
4545
from sbi.utils.torchutils import assert_all_finite
4646

4747

48-
class PosteriorEstimator(NeuralInference, ABC):
48+
class PosteriorEstimatorTrainer(NeuralInference, ABC):
4949
def __init__(
5050
self,
5151
prior: Optional[Distribution] = None,
@@ -103,7 +103,7 @@ def append_simulations(
103103
proposal: Optional[DirectPosterior] = None,
104104
exclude_invalid_x: Optional[bool] = None,
105105
data_device: Optional[str] = None,
106-
) -> "PosteriorEstimator":
106+
) -> "PosteriorEstimatorTrainer":
107107
r"""Store parameters and simulation outputs to use them for later training.
108108
109109
Data are stored as entries in lists for each type of variable (parameter/data).

sbi/inference/trainers/npe/npe_c.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
from torch.distributions import Distribution, MultivariateNormal, Uniform
1111

1212
from sbi.inference.posteriors.direct_posterior import DirectPosterior
13-
from sbi.inference.trainers.npe.npe_base import PosteriorEstimator
13+
from sbi.inference.trainers.npe.npe_base import PosteriorEstimatorTrainer
1414
from sbi.neural_nets.estimators.shape_handling import (
1515
reshape_to_batch_event,
1616
reshape_to_sample_batch_event,
@@ -28,7 +28,7 @@
2828
from sbi.utils.torchutils import BoxUniform, assert_all_finite
2929

3030

31-
class NPE_C(PosteriorEstimator):
31+
class NPE_C(PosteriorEstimatorTrainer):
3232
"""Neural Posterior Estimation algorithm (NPE-C) as in Greenberg et al. (2019). [1]
3333
3434
[1] *Automatic Posterior Transformation for Likelihood-free Inference*,

sbi/inference/trainers/nre/nre_a.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,13 +7,13 @@
77
from torch import Tensor, nn, ones
88
from torch.distributions import Distribution
99

10-
from sbi.inference.trainers.nre.nre_base import RatioEstimator
10+
from sbi.inference.trainers.nre.nre_base import RatioEstimatorTrainer
1111
from sbi.sbi_types import TensorboardSummaryWriter
1212
from sbi.utils.sbiutils import del_entries
1313
from sbi.utils.torchutils import assert_all_finite
1414

1515

16-
class NRE_A(RatioEstimator):
16+
class NRE_A(RatioEstimatorTrainer):
1717
"""AALR, here known as Neural Ratio Estimation algorithm (NRE-A) [1].
1818
1919
[1] *Likelihood-free MCMC with Amortized Approximate Likelihood Ratios*, Hermans

0 commit comments

Comments
 (0)