|
| 1 | +# This file is part of sbi, a toolkit for simulation-based inference. sbi is licensed |
| 2 | +# under the Apache License Version 2.0, see <https://www.apache.org/licenses/> |
| 3 | + |
| 4 | +import time |
| 5 | +from copy import deepcopy |
| 6 | +from datetime import datetime |
| 7 | +from pathlib import Path |
| 8 | +from typing import Callable, Optional, Tuple, Union |
| 9 | + |
| 10 | +import torch |
| 11 | +from torch import Tensor |
| 12 | +from torch.nn.utils.clip_grad import clip_grad_norm_ |
| 13 | +from torch.optim.adam import Adam |
| 14 | +from torch.utils import data |
| 15 | +from torch.utils.data.sampler import SubsetRandomSampler |
| 16 | +from torch.utils.tensorboard.writer import SummaryWriter |
| 17 | + |
| 18 | +from sbi.neural_nets.estimators import UnconditionalDensityEstimator |
| 19 | +from sbi.neural_nets.estimators.shape_handling import ( |
| 20 | + reshape_to_batch_event, |
| 21 | +) |
| 22 | +from sbi.neural_nets.factory import marginal_nn |
| 23 | +from sbi.utils import check_estimator_arg, get_log_root |
| 24 | +from sbi.utils.torchutils import assert_all_finite, process_device |
| 25 | + |
| 26 | + |
| 27 | +class MarginalTrainer: |
| 28 | + def __init__( |
| 29 | + self, |
| 30 | + density_estimator: Union[str, Callable] = "MAF", |
| 31 | + device: str = "cpu", |
| 32 | + summary_writer: Optional[SummaryWriter] = None, |
| 33 | + show_progress_bars: bool = True, |
| 34 | + ): |
| 35 | + """Utility class for training a marginal estimator method.""" |
| 36 | + |
| 37 | + self._device = process_device(device) |
| 38 | + self._neural_net = None |
| 39 | + |
| 40 | + self._show_progress_bars = show_progress_bars |
| 41 | + self._val_loss = float("Inf") |
| 42 | + |
| 43 | + self._summary_writer = ( |
| 44 | + self._default_summary_writer() if summary_writer is None else summary_writer |
| 45 | + ) |
| 46 | + |
| 47 | + # Logging during training (by SummaryWriter). |
| 48 | + self._summary = dict( |
| 49 | + epochs_trained=[], |
| 50 | + best_validation_loss=[], |
| 51 | + validation_loss=[], |
| 52 | + training_loss=[], |
| 53 | + epoch_durations_sec=[], |
| 54 | + ) |
| 55 | + |
| 56 | + check_estimator_arg(density_estimator) |
| 57 | + if isinstance(density_estimator, str): |
| 58 | + self._build_neural_net = marginal_nn(model=density_estimator) |
| 59 | + else: |
| 60 | + self._build_neural_net = density_estimator |
| 61 | + |
| 62 | + def get_dataloaders( |
| 63 | + self, |
| 64 | + training_batch_size: int = 200, |
| 65 | + validation_fraction: float = 0.1, |
| 66 | + dataloader_kwargs: Optional[dict] = None, |
| 67 | + ) -> Tuple[data.DataLoader, data.DataLoader]: |
| 68 | + x = self.get_samples() |
| 69 | + dataset = data.TensorDataset(x) |
| 70 | + |
| 71 | + # Get total number of training examples. |
| 72 | + num_examples = x.size(0) |
| 73 | + # Select random train and validation splits from (theta, x) pairs. |
| 74 | + num_training_examples = int((1 - validation_fraction) * num_examples) |
| 75 | + num_validation_examples = num_examples - num_training_examples |
| 76 | + |
| 77 | + # Separate indices for training and validation |
| 78 | + permuted_indices = torch.randperm(num_examples) |
| 79 | + self.train_indices, self.val_indices = ( |
| 80 | + permuted_indices[:num_training_examples], |
| 81 | + permuted_indices[num_training_examples:], |
| 82 | + ) |
| 83 | + |
| 84 | + train_loader_kwargs = { |
| 85 | + "batch_size": min(training_batch_size, num_training_examples), |
| 86 | + "drop_last": True, |
| 87 | + "sampler": SubsetRandomSampler(self.train_indices.tolist()), |
| 88 | + } |
| 89 | + val_loader_kwargs = { |
| 90 | + "batch_size": min(training_batch_size, num_validation_examples), |
| 91 | + "shuffle": False, |
| 92 | + "drop_last": True, |
| 93 | + "sampler": SubsetRandomSampler(self.val_indices.tolist()), |
| 94 | + } |
| 95 | + if dataloader_kwargs is not None: |
| 96 | + train_loader_kwargs = dict(train_loader_kwargs, **dataloader_kwargs) |
| 97 | + val_loader_kwargs = dict(val_loader_kwargs, **dataloader_kwargs) |
| 98 | + |
| 99 | + train_loader = data.DataLoader(dataset, **train_loader_kwargs) |
| 100 | + val_loader = data.DataLoader(dataset, **val_loader_kwargs) |
| 101 | + |
| 102 | + return train_loader, val_loader |
| 103 | + |
| 104 | + def append_samples(self, x) -> "MarginalTrainer": |
| 105 | + self._x = x |
| 106 | + return self |
| 107 | + |
| 108 | + def get_samples(self) -> Tensor: |
| 109 | + return self._x |
| 110 | + |
| 111 | + def loss(self, x: Tensor) -> Tensor: |
| 112 | + """Return loss. |
| 113 | +
|
| 114 | + The loss is the negative log prob |
| 115 | +
|
| 116 | + Returns: |
| 117 | + Negative log prob. |
| 118 | + """ |
| 119 | + if self._neural_net is None: |
| 120 | + raise ValueError( |
| 121 | + "Neural network has not been initialized. Please call `train` first." |
| 122 | + ) |
| 123 | + else: |
| 124 | + x = reshape_to_batch_event(x, event_shape=self._neural_net.input_shape) |
| 125 | + loss = self._neural_net.loss(x) |
| 126 | + assert_all_finite(loss, "loss") |
| 127 | + return loss |
| 128 | + |
| 129 | + def train( |
| 130 | + self, |
| 131 | + training_batch_size: int = 200, |
| 132 | + learning_rate: float = 5e-4, |
| 133 | + validation_fraction: float = 0.1, |
| 134 | + stop_after_epochs: int = 20, |
| 135 | + max_num_epochs: int = 2**31 - 1, |
| 136 | + clip_max_norm: Optional[float] = 5.0, |
| 137 | + dataloader_kwargs: Optional[dict] = None, |
| 138 | + ) -> UnconditionalDensityEstimator: |
| 139 | + r"""Return density estimator that approximates the distribution $p(x)$. |
| 140 | +
|
| 141 | + Args: |
| 142 | + training_batch_size: Training batch size. |
| 143 | + learning_rate: Learning rate for Adam optimizer. |
| 144 | + validation_fraction: The fraction of data to use for validation. |
| 145 | + stop_after_epochs: The number of epochs to wait for improvement on the |
| 146 | + validation set before terminating training. |
| 147 | + max_num_epochs: Maximum number of epochs to run. If reached, we stop |
| 148 | + training even when the validation loss is still decreasing. Otherwise, |
| 149 | + we train until validation loss increases (see also `stop_after_epochs`). |
| 150 | + clip_max_norm: Value at which to clip the total gradient norm in order to |
| 151 | + prevent exploding gradients. Use None for no clipping. |
| 152 | + show_train_summary: Whether to print the number of epochs and validation |
| 153 | + loss after the training. |
| 154 | + dataloader_kwargs: Additional or updated kwargs to be passed to the training |
| 155 | + and validation dataloaders (like, e.g., a collate_fn) |
| 156 | +
|
| 157 | + Returns: |
| 158 | + Density estimator that approximates the distribution $p(\theta|x)$. |
| 159 | + """ |
| 160 | + |
| 161 | + # fake round setting just for compatibility with NeuralInference |
| 162 | + self._round = 0 |
| 163 | + |
| 164 | + train_loader, val_loader = self.get_dataloaders( |
| 165 | + training_batch_size, |
| 166 | + validation_fraction, |
| 167 | + dataloader_kwargs=dataloader_kwargs, |
| 168 | + ) |
| 169 | + |
| 170 | + if self._neural_net is None: |
| 171 | + # Get x to initialize NN |
| 172 | + x = self.get_samples() |
| 173 | + # Use only training data for building the neural net (z-scoring transforms) |
| 174 | + |
| 175 | + self._neural_net = self._build_neural_net( |
| 176 | + x[self.train_indices].to("cpu"), |
| 177 | + ) |
| 178 | + |
| 179 | + self.optimizer = Adam(list(self._neural_net.parameters()), lr=learning_rate) |
| 180 | + self.epoch, self._val_loss = 0, float("Inf") |
| 181 | + |
| 182 | + while self.epoch <= max_num_epochs and not self._converged( |
| 183 | + self.epoch, stop_after_epochs |
| 184 | + ): |
| 185 | + # Train for a single epoch. |
| 186 | + self._neural_net.train() |
| 187 | + train_loss_sum = 0 |
| 188 | + epoch_start_time = time.time() |
| 189 | + for batch in train_loader: |
| 190 | + self.optimizer.zero_grad() |
| 191 | + # Get batches on current device. |
| 192 | + x_batch = batch[0].to(self._device) |
| 193 | + |
| 194 | + train_losses = self.loss(x_batch) |
| 195 | + train_loss = torch.mean(train_losses) |
| 196 | + train_loss_sum += train_losses.sum().item() |
| 197 | + |
| 198 | + train_loss.backward() |
| 199 | + if clip_max_norm is not None: |
| 200 | + clip_grad_norm_( |
| 201 | + self._neural_net.parameters(), max_norm=clip_max_norm |
| 202 | + ) |
| 203 | + self.optimizer.step() |
| 204 | + |
| 205 | + self.epoch += 1 |
| 206 | + |
| 207 | + train_loss_average = train_loss_sum / ( |
| 208 | + len(train_loader) * train_loader.batch_size # type: ignore |
| 209 | + ) |
| 210 | + self._summary["training_loss"].append(train_loss_average) |
| 211 | + |
| 212 | + # Calculate validation performance. |
| 213 | + self._neural_net.eval() |
| 214 | + val_loss_sum = 0 |
| 215 | + |
| 216 | + with torch.no_grad(): |
| 217 | + for batch in val_loader: |
| 218 | + x_batch = batch[0].to(self._device) |
| 219 | + # Take negative loss here to get validation log_prob. |
| 220 | + val_losses = self.loss(x_batch) |
| 221 | + val_loss_sum += val_losses.sum().item() |
| 222 | + |
| 223 | + # Take mean over all validation samples. |
| 224 | + self._val_loss = val_loss_sum / ( |
| 225 | + len(val_loader) * val_loader.batch_size # type: ignore |
| 226 | + ) |
| 227 | + # Log validation loss for every epoch. |
| 228 | + self._summary["validation_loss"].append(self._val_loss) |
| 229 | + self._summary["epoch_durations_sec"].append(time.time() - epoch_start_time) |
| 230 | + |
| 231 | + self._maybe_show_progress(self._show_progress_bars, self.epoch) |
| 232 | + |
| 233 | + # Update summary. |
| 234 | + self._summary["epochs_trained"].append(self.epoch) |
| 235 | + self._summary["best_validation_loss"].append(self._best_val_loss) |
| 236 | + |
| 237 | + # Update tensorboard and summary dict. |
| 238 | + self._summarize(round_=self._round) |
| 239 | + |
| 240 | + # Avoid keeping the gradients in the resulting network, which can |
| 241 | + # cause memory leakage when benchmarking. |
| 242 | + self._neural_net.zero_grad(set_to_none=True) |
| 243 | + |
| 244 | + return deepcopy(self._neural_net) |
| 245 | + |
| 246 | + def _default_summary_writer(self) -> SummaryWriter: |
| 247 | + """Return summary writer logging to method- and simulator-specific directory.""" |
| 248 | + |
| 249 | + method = self.__class__.__name__ |
| 250 | + logdir = Path( |
| 251 | + get_log_root(), method, datetime.now().isoformat().replace(":", "_") |
| 252 | + ) |
| 253 | + return SummaryWriter(logdir) |
| 254 | + |
| 255 | + def _converged(self, epoch: int, stop_after_epochs: int) -> bool: |
| 256 | + """Return whether the training converged yet and save best model state so far. |
| 257 | +
|
| 258 | + Checks for improvement in validation performance over previous epochs. |
| 259 | +
|
| 260 | + Args: |
| 261 | + epoch: Current epoch in training. |
| 262 | + stop_after_epochs: How many fruitless epochs to let pass before stopping. |
| 263 | +
|
| 264 | + Returns: |
| 265 | + Whether the training has stopped improving, i.e. has converged. |
| 266 | + """ |
| 267 | + converged = False |
| 268 | + |
| 269 | + assert self._neural_net is not None |
| 270 | + neural_net = self._neural_net |
| 271 | + |
| 272 | + # (Re)-start the epoch count with the first epoch or any improvement. |
| 273 | + if epoch == 0 or self._val_loss < self._best_val_loss: |
| 274 | + self._best_val_loss = self._val_loss |
| 275 | + self._epochs_since_last_improvement = 0 |
| 276 | + self._best_model_state_dict = deepcopy(neural_net.state_dict()) |
| 277 | + else: |
| 278 | + self._epochs_since_last_improvement += 1 |
| 279 | + |
| 280 | + # If no validation improvement over many epochs, stop training. |
| 281 | + if self._epochs_since_last_improvement > stop_after_epochs - 1: |
| 282 | + neural_net.load_state_dict(self._best_model_state_dict) |
| 283 | + converged = True |
| 284 | + |
| 285 | + return converged |
| 286 | + |
| 287 | + @staticmethod |
| 288 | + def _maybe_show_progress(show: bool, epoch: int) -> None: |
| 289 | + if show: |
| 290 | + # end="\r" deletes the print statement when a new one appears. |
| 291 | + # https://stackoverflow.com/questions/3419984/. `\r` in the beginning due |
| 292 | + # to #330. |
| 293 | + print("\r", f"Training neural network. Epochs trained: {epoch}", end="") |
| 294 | + |
| 295 | + def _summarize( |
| 296 | + self, |
| 297 | + round_: int, |
| 298 | + ) -> None: |
| 299 | + """Update the summary_writer with statistics for a given round. |
| 300 | +
|
| 301 | + During training several performance statistics are added to the summary, e.g., |
| 302 | + using `self._summary['key'].append(value)`. This function writes these values |
| 303 | + into summary writer object. |
| 304 | +
|
| 305 | + Args: |
| 306 | + round: index of round |
| 307 | +
|
| 308 | + Scalar tags: |
| 309 | + - epochs_trained: |
| 310 | + number of epochs trained |
| 311 | + - best_validation_loss: |
| 312 | + best validation loss (for each round). |
| 313 | + - validation_loss: |
| 314 | + validation loss for every epoch (for each round). |
| 315 | + - training_loss |
| 316 | + training loss for every epoch (for each round). |
| 317 | + - epoch_durations_sec |
| 318 | + epoch duration for every epoch (for each round) |
| 319 | +
|
| 320 | + """ |
| 321 | + |
| 322 | + # Add most recent training stats to summary writer. |
| 323 | + self._summary_writer.add_scalar( |
| 324 | + tag="epochs_trained", |
| 325 | + scalar_value=self._summary["epochs_trained"][-1], |
| 326 | + global_step=round_ + 1, |
| 327 | + ) |
| 328 | + |
| 329 | + self._summary_writer.add_scalar( |
| 330 | + tag="best_validation_loss", |
| 331 | + scalar_value=self._summary["best_validation_loss"][-1], |
| 332 | + global_step=round_ + 1, |
| 333 | + ) |
| 334 | + |
| 335 | + # Add validation loss for every epoch. |
| 336 | + # Offset with all previous epochs. |
| 337 | + offset = ( |
| 338 | + torch.tensor(self._summary["epochs_trained"][:-1], dtype=torch.int) |
| 339 | + .sum() |
| 340 | + .item() |
| 341 | + ) |
| 342 | + for i, vlp in enumerate(self._summary["validation_loss"][offset:]): |
| 343 | + self._summary_writer.add_scalar( |
| 344 | + tag="validation_loss", |
| 345 | + scalar_value=vlp, |
| 346 | + global_step=offset + i, |
| 347 | + ) |
| 348 | + |
| 349 | + for i, tlp in enumerate(self._summary["training_loss"][offset:]): |
| 350 | + self._summary_writer.add_scalar( |
| 351 | + tag="training_loss", |
| 352 | + scalar_value=tlp, |
| 353 | + global_step=offset + i, |
| 354 | + ) |
| 355 | + |
| 356 | + for i, eds in enumerate(self._summary["epoch_durations_sec"][offset:]): |
| 357 | + self._summary_writer.add_scalar( |
| 358 | + tag="epoch_durations_sec", |
| 359 | + scalar_value=eds, |
| 360 | + global_step=offset + i, |
| 361 | + ) |
| 362 | + |
| 363 | + self._summary_writer.flush() |
0 commit comments