Skip to content

optimizing on nested cross-validation (CV) #53

@susank2000

Description

@susank2000

Although i can train models using chronological CV (using commands, 'chron', 6, 2), I keep receiving an error if i try using nested cross-validation for either evaluating and/or optimizing my models. The input data was formatted in EEGLAB, so i'm not sure why the indexing may be causing issues. The parameter commands I've specified include: ('subchron', 2, 6, 0) OR ('subchron', 2, 6, 2).

Any insight would be appreciated. Thanks!

The value assigned to idxset in set_partition must be a row vector, but was: [1;2;3;4;5;6;7;8;9;10;11;12;13;14;85;86;87;88;89;90;91;92;93;94;95;96;97;98].
occurred in:
check_shape: 42
check_value: 735
assign_value: 669
assign_nvps: 645
arg_define: 184
set_partition: 50
hlp_wrapresults: 52
exp_eval: 131
@(f,a,frame__f8)feval(f,a{:}): 0
hlp_scope: 53
exp_eval_optimized: 52
utl_resolve_streams: 87
utl_preprocess_bundle: 39
@(testset,model)args.predict_func(utl_preprocess_bundle(testset,model),model): 904
evaluate_internal: 68
cached_evaluate: 42
utl_evaluate_fold: 34
par_beginschedule: 166
par_schedule: 71
utl_crossval: 311
@(varargin)utl_crossval(nestedcv_opts{:},'args',varargin): 0
hlp_wrapresults: 52
par_beginschedule: 166
par_schedule: 71
utl_gridsearch: 149
utl_searchmodel: 172
hlp_getresult: 47
par_beginschedule: 166
run_computation: 932
@(f,a,frame__f7)feval(f,a{:}): 0
hlp_scope: 53
bci_train: 856
do_run: 75
utl_run_batchjob: 33
par_beginschedule: 166
par_schedule: 71
bci_batchtrain: 421

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions