-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsrfi-100-1.7.txt
1020 lines (931 loc) · 41 KB
/
srfi-100-1.7.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
SPDX-FileCopyrightText: 2009 Joo ChurlSoo
SPDX-License-Identifier: MIT
Title
define-lambda-object
Author
Joo ChurlSoo
Abstract
This SRFI introduces a macro, DEFINE-LAMBDA-OBJECT which defines a set of
procedures, that is, a group, two constructors, and a predicate. The
constructors also make a group of procedures, namely lambda objects. The
macro extends DEFINE-RECORD-TYPE (SRFI 9) in being more general but much less
general than DEFCLASS (CLOS). The macro has no explicit field accessors and
mutators but parent groups, required fields, optional fields, automatic
fields, read-write fields, read-only fields, inaccessible hidden fields,
immutable virtual fields, and common sharing fields.
Rationale
An object created by a constructor procedure is a procedure whose first
argument is a symbolized field name that is used to identify fields. The
lambda object plays the role of the accessor and mutator of each field.
Though the average time required to access a randomly chosen field is more for
the lambda object than for the accessors and mutators of most other
record-defining macros that use field indices to indentify fields, the lambda
object makes the troublesome explicit or implicit accessors and mutators
unnecessary. In addition, this makes the accesors and mutators to be
automatically `nongenerative' and reduces the role of the predicate procedure.
Although DEFINE-RECORD-TYPE of R6RS can also have implicit accessors and
mutators, they should know their own record name. Further more, when there
are parents, they should know both their own record name and their parents'
record names, which could make users confused, though there is an advantage
that a record can have another field with the same name.
This macro works not only as DEFINE-RECORD-TYPE with required fields but also
as DEFSTRUCT of Common Lisp with optional fields. The automatic field can be
used as a procedure that modifies or handles the values of the other fields.
When a group has multiple parent groups, all the fields of parent groups must
exist in the field spec of the child group in contrary with DEFINE-RECORD-TYPE
of R6RS. This is too much trouble in case parent groups have several tens of
fields. But it also has the advantage of reconfirming the existence and
properties of each field, and making the constructors to be able to be defined
irrespectively the order of the parents' fields. From a practical point of
view, inheritance may be superfluous in this macro as the lambda object itself
has data and methods as well as their accessors and mutators.
Specification
(define-lambda-object <group spec> <field spec>)
<group spec> --> <group> | (<group> <parent group>*)
<parent group> --> <group> ;unamendable group
| (<group>) ;amendable group
<field spec> --> <required field>* <optional field>* <automatic field>*
<required field> --> <field> ;read-only field
| (<field>) ;read-write field
<optional field> --> (<field> <default>) ;read-only field
| ((<field>) <default>) ;read-write field
| ('<field> <default>) ;inaccessible hidden field
<automatic field> --> (,<field> <default>) ;read-only field
| ((,<field>) <default>) ;read-write field
| (',<field> <default>) ;inaccessible hidden field
| (`,<field> <default>) ;immutable virtual field
| (,,<field> <default>) ;common read-only field
| ((,,<field>) <default>) ;common read-write field
The name of <constructor> is generated by prefixing `make-' to the group name,
or by prefixing `make-' and postfixing `-by-name' to the group name.
The name of <predicate> is generated by adding a question mark (`?') to the
end of the group name.
The <group> and <field> must be identifiers.
Each <default> is an <expression> that is evaluated in an environment that the
values of all the previous <field>s are visible. There is one exception to
this rule. The <default>s of <automatic common field>s are evaluated in the
outer environment of the define-lambda-object form, and their values are
visible as the <default>s of the other fields are evaluated.
The define-lambda-object form is a definition and can appear anywhere any
other <definition> can appear. Each time define-lambda-object form is
evaluated, a new group is created with distinct <group>, <constructor>, and
<predicate> procedures.
The <group> is bound to a procedure of one argument. Like a gene, it has
information on its <parent group>s, <constructor>s, <predicate>, and the
number and properties of <field>s. And they are checked out whenever
define-lambda-object form is evaluated. In case of inheritance, all the
<field>s of <parent group>s must exist in the <field spec> of the child group,
irrespectively of the order. Otherwise an error is signaled. In addition,
the properties (mutability, sort of field, and default expression) of <field>s
of unamendable groups must be preserved in contrast with those of amendable
groups. Otherwise an error is signaled.
The <constructor> is bound to a procedure that takes at least as many
arguments as the number of <required field>s. Whenever it is called, it
returns an object of the <group>, namely a procedure, which has information on
its own group and all that goes with it. Its first argument must be a symbol
of the same name as <field>. Otherwise an error is signaled. The object
becomes an accessor procedure of each <field> in case of one argument and a
mutator procedure of each <field> in case of two arguments where the second
argument is a new field value.
The names of <field>s are used to access the <field>s as symbols of the same
names. So they must be distinct. Otherwise an error is signaled. The
read-write fields can be modified, whereas any attempt to modify the values of
the read-only fields via mutators signals an error.
Note: The read-only fields are not immutable. Their values, for instance, can
be modified by other fields whose values work like their mutators.
The <required field> is initialized to the first one of the remaining
arguments. If there are no more remaining arguments, an error is signaled.
The initialization of the <optional field>s is done by two types of
<constructor>s:
1. <make-`group-name'> constructor
The initialization method of <optional field>s is the same as that of
<required field>s except that the field is bound to the <default> instead of
signaling an error if there are no more remaining arguments.
2. <make-`group-name'-by-name> constructor
The name used at a call site for the corresponding <optional field> is a
symbol of the same name as the <field>. The remaining arguments are
sequentially interpreted as a series of pairs, where the first member of each
pair is a field name and the second is the corresponding value. If there is
no element for a particular field name, the field is initialized to the
<default>.
The <automatic common field>s are initialized to each corresponding <default>
that is evaluated at the time the define-lambda-object form is evaluated, and
the values are shared with all the lambda objects that are maded by the
constructors of the define-lambda-object form.
The other <automatic field>s except <automatic virtual field>s are initialized
to each corresponding <default> that is evaluated at the time the lambda
object is made by a constructor.
The <hidden field> is an externally nonexistent field, that is, the field is
invisible outside of the define-lambda-object form but visible inside of it.
On the contrary, the <virtual field> is an internally nonexistent field whose
<default> is evaluated each time when the field is accessed.
The <predicate> is a predicate procedure that returns #t for objects
constructed by <constructor> or <constructor>s for child groups and #f for
everything else.
Examples
;; The `x' is a read-write field.
;; The `y' is a read-only field.
(define-lambda-object ppoint (x) y)
(define pp (make-ppoint 10 20))
(pp 'x) => 10
(pp 'y) => 20
(pp 'x 11) (pp 'x) => 11
(pp 'y 22) => error: read-only field y
;; The parent group `ppoint' is an unamendable group.
(define-lambda-object (cpoint ppoint) x y color)
=> error: incompatible read-write field ppoint x
;; The 'color-init' and 'area-init' are automatic fields.
;; The 'color' and 'area' are virtual fields.
(define color 'black)
(define-lambda-object (cpoint ppoint)
(x) y
(,color-init color) (,area-init (* x y))
(`,color color) (`,area (* x y)))
(define ap (make-cpoint 3 33 'black)) => error: expects 2 arguments
(define ap (make-cpoint 10 20))
(map ap '(x y color-init color area-init area)) => (10 20 black black 200 200)
(ap 'x 30)
(map ap '(x y color-init color area-init area)) => (30 20 black black 200 600)
(set! color 'white)
(map ap '(x y color-init color area-init area)) => (30 20 black white 200 600)
;; The 'color' is an automatic common field.
(define-lambda-object (cpoint ppoint)
(x) y
((,,color) color)
(`,area (* x y))
(,set/add (lambda (i j) (set! x (+ i x)) (set! y (+ j y)))))
(define tp (make-cpoint 10 15))
(map tp '(x y color area)) => (10 15 white 150)
(define cp (make-cpoint 15 20))
(map cp '(x y color area)) => (15 20 white 300)
(cp 'color 'brown)
((cp 'set/add) 5 10)
(map cp '(x y color area)) => (20 30 brown 600)
(map tp '(x y color area)) => (10 15 brown 150)
(cpoint? ap) => #f
(cpoint? tp) => #t
(cpoint? cp) => #t
(ppoint? cp) => #t
;; The parent group `ppoint' is an amendable group.
;; The 'stack' is an optional hidden field.
;; The 'pop' is a virtual field.
;; The 'push' is an automatic field.
(define-lambda-object (spoint (ppoint))
(x 0) (y x) (z x) ('stack '())
(`,pop (if (null? stack)
(error 'spoint "null stack" stack)
(let ((s (car stack))) (set! stack (cdr stack)) s)))
(,push (lambda (s) (set! stack (cons s stack)))))
(define sp (make-spoint))
(map sp '(x y z)) => (0 0 0)
(define sp (make-spoint 5 55))
(map sp '(x y z)) => (5 55 5)
(define sp (make-spoint-by-name 'z 100 'stack (list 'sunflower)))
(map sp '(x y z)) => (0 0 100)
((sp 'push) 'rose) ((sp 'push) 'lily)
(sp 'pop) => lily
(sp 'pop) => rose
(sp 'pop) => sunflower
(sp 'pop) => error: null stack ()
(sp 'stack) => error: absent field stack
;; The 'stack' is an automatic hidden field.
;; The `set/add' is the same automatic field as that of `cpoint' group,
;; but it has a different default which simulates polymorphism and overloading.
(define-lambda-object (epoint (spoint) (cpoint))
((x) 5) ((y) 10) ((z) 15) ((planet) "earth")
(,,color "brown")
(',stack '())
(`,area (* x y))
(`,volume (* x y z))
(`,pop (if (null? stack)
(error 'spoint "null stack" stack)
(let ((s (car stack))) (set! stack (cdr stack)) s)))
(,push (lambda (s) (set! stack (cons s stack))))
(,adbmal (lambda (f) (f x y z color planet (* x y) (* x y z))))
(,set/add
(case-lambda
((i j) (cond
((and (string? i) (string? j)) (set! color i) (set! planet j))
((and (number? i) (number? j)) (set! x (+ i x)) (set! y (+ j y)))
(else (error 'epoint "set/add: wrong data type" i j))))
((i j k) (set! x (+ i x)) (set! y (+ j y)) (set! z (+ k z))))))
(define ep (make-epoint-by-name 'planet "jupiter"))
((ep 'adbmal) vector) => #(5 10 15 "brown" "jupiter" 50 750)
(define tp (make-epoint 10 15 20))
((tp 'adbmal) vector) => #(10 15 20 "brown" "earth" 150 3000)
(map (lambda (o) (o 'x)) (list pp ap cp sp ep))
=> (11 30 20 0 5)
(map (lambda (p) (p ep)) (list ppoint? cpoint? spoint? epoint?))
=> (#t #t #t #t)
((ep 'set/add) "red" "mars")
((ep 'adbmal) list) => (5 10 15 "red" "mars" 50 750)
((tp 'adbmal) list) => (10 15 20 "red" "earth" 150 3000)
((ep 'set/add) 5 10)
((ep 'adbmal) list) => (10 20 15 "red" "mars" 200 3000)
((ep 'set/add) 10 30 50)
(map ep '(x y z area volume)) => (20 50 65 1000 65000)
(map cp '(x y area)) => (20 30 600)
((cp 'set/add) 20 50)
(map cp '(x y area)) => (40 80 3200)
((cp 'set/add) 10 100 1000) => error: expects 2 arguments
epoint => #<procedure:epoint>
(epoint 'parent) => (#<procedure:spoint> #<procedure:cpoint>)
(epoint 'constructor) => (#<procedure:make-epoint> #<procedure:make-epoint-by-name>)
(epoint 'predicate) => #<procedure:epoint?>
(epoint 'read-write-field) => (x y z planet)
(epoint 'read-only-field) => (color area volume pop push adbmal set/add)
(epoint 'required-field) => ()
(epoint 'optional-field) => ((x 5) (y 10) (z 15) (planet "earth"))
(epoint 'common-field) => ((color "brown"))
(epoint 'hidden-field) => ((stack '()))
(epoint 'virtual-field) => ((area (* x y))
(volume (* x y z))
(pop (if (null? stack)
(error 'spoint "null stack" stack)
(let ((s (car stack)))
(set! stack (cdr stack)) s))))
(epoint 'automatic-field)
=>((color "brown")
(area (* x y))
(volume (* x y z))
(pop
(if (null? stack)
(error 'spoint "null stack" stack)
(let ((s (car stack))) (set! stack (cdr stack)) s)))
(stack '())
(push (lambda (s) (set! stack (cons s stack))))
(adbmal (lambda (f) (f x y z color planet (* x y) (* x y z))))
(set/add
(case-lambda
((i j)
(cond
((and (string? i) (string? j)) (set! color i) (set! planet j))
((and (number? i) (number? j)) (set! x (+ i x)) (set! y (+ j y)))
(else (error 'epoint "set/add: wrong data type" i j))))
((i j k) (set! x (+ i x)) (set! y (+ j y)) (set! z (+ k z))))))
Reference Implementation
The implementation below is written in R6RS hygienic macro and define-macro.
The predicate procedure is implementation dependant.
For instance, a procedure such as procedure-name or object-name, which returns
the name of procedure or object, must be available to distinguish objects
created by all the constructors from the others.
;;; define-lambda-object --- define-syntax
(define-syntax unquote-get
(syntax-rules ()
((unquote-get symbol ((n0 d0) (n1 d1) ...))
(if (eq? symbol 'n0)
d0
(unquote-get symbol ((n1 d1) ...))))
((unquote-get symbol ())
(error 'define-lambda-object "absent field" symbol))))
(define-syntax unquote-get*
(syntax-rules ()
((unquote-get* symbol (n0 n1 ...))
(if (eq? symbol 'n0)
n0
(unquote-get* symbol (n1 ...))))
((unquote-get* symbol ())
(error 'define-lambda-object "not available inspection" symbol))))
(define-syntax unquote-set!
(syntax-rules ()
((unquote-set! symbol new-val (n0 n1 ...) fi)
(if (eq? symbol 'n0)
(set! n0 new-val)
(unquote-set! symbol new-val (n1 ...) fi)))
((unquote-set! symbol new-val () fi)
(if (memq symbol 'fi)
(error 'define-lambda-object "read-only field" symbol)
(error 'define-lambda-object "absent field" symbol)))))
(define-syntax seq-lambda
(syntax-rules ()
((seq-lambda () (r ...) () body)
(lambda (r ...) body))
((seq-lambda () (r ...) (o oo ...) body)
(lambda (r ... . z)
(seq-lambda (z) () (o oo ...) body)))
((seq-lambda (z) () ((n d) . e) body)
(let ((y (if (null? z) z (cdr z)))
(n (if (null? z) d (car z))))
(seq-lambda (y) () e body)))
((seq-lambda (z) () () body)
(if (null? z)
body
(error 'define-lambda-object "too many arguments" z)))))
;; Choose either procedure type or macro type according to your implementation.
;; 1. procedure opt-key
(define (opt-key z k d)
(let ((x (car z)) (y (cdr z)))
(if (null? y)
(cons d z)
(if (eq? k x)
y
(let lp ((head (list x (car y))) (tail (cdr y)))
(if (null? tail)
(cons d z)
(let ((x (car tail)) (y (cdr tail)))
(if (null? y)
(cons d z)
(if (eq? k x)
(cons (car y) (append head (cdr y)))
(lp (cons x (cons (car y) head)) (cdr y)))))))))))
;; 2. macro opt-key!
(define-syntax opt-key!
(syntax-rules ()
((opt-key! z n d)
(let ((x (car z)) (y (cdr z)))
(if (null? y)
d
(if (eq? 'n x)
(begin (set! z (cdr y)) (car y))
(let lp ((head (list x (car y)))
(tail (cdr y)))
(if (null? tail)
d
(let ((x (car tail)) (y (cdr tail)))
(if (null? y)
d
(if (eq? 'n x)
(begin (set! z (append head (cdr y))) (car y))
(lp (cons x (cons (car y) head)) (cdr y)))))))))))))
(define-syntax key-lambda
(syntax-rules ()
((key-lambda () (r ...) () body)
(lambda (r ...) body))
((key-lambda () (r ...) (o oo ...) body)
(lambda (r ... . z)
(key-lambda (z) () (o oo ...) body)))
((key-lambda (z) () ((n d) . e) body)
;; 1. procedure opt-key
(let* ((y (if (null? z) (cons d z) (opt-key z 'n d)))
(n (car y))
(y (cdr y)))
(key-lambda (y) () e body)))
;; 2. macro opt-key!
;; (let ((n (if (null? z) d (opt-key! z n d))))
;; (key-lambda (z) () e body)))
((key-lambda (z) () () body)
(if (null? z)
body
(error 'define-lambda-object "too many arguments" z)))))
(define (check-duplicate ls err-str)
(cond ((null? ls) #f)
((memq (car ls) (cdr ls)) (error 'define-lambda-object err-str (car ls)))
(else (check-duplicate (cdr ls) err-str))))
(define (check-field part-list main-list cmp name err-str)
(let lp ((part part-list) (main main-list))
(if (null? part)
main
(if (null? main)
(error 'define-lambda-object err-str name (car part))
(let ((field (car part)))
(if (cmp field (car main))
(lp (cdr part) (cdr main))
(let loop ((head (list (car main))) (tail (cdr main)))
(if (null? tail)
(error 'define-lambda-object err-str name field)
(if (cmp field (car tail))
(lp (cdr part) (append head (cdr tail)))
(loop (cons (car tail) head) (cdr tail)))))))))))
(define-syntax define-object
(syntax-rules ()
((define-object name make-object make-object-by-name pred-object (gr ...) (gi ...) (fm ...) ((fi id) ...) (r ...) (o ...) (a ...) ((c cd) ...) ((v vd) ...) ((h hd) ...))
(begin
(define safe-parent
(begin
;; check duplication
(check-duplicate '(name gi ... gr ...) "duplicated group")
(check-duplicate '(fm ... fi ... h ...) "duplicated field")
;; check field
(check-field (gi 'read-write-field) '(fm ...) eq? 'gi "incompatible read-write field") ...
(check-field (gi 'read-only-field) '(fi ...) eq? 'gi "incompatible read-only field") ...
(check-field (gi 'required-field) '(r ...) eq? 'gi "incompatible required field") ...
(check-field (gi 'optional-field) '(o ...) equal? 'gi "incompatible optional field") ...
(check-field (gi 'automatic-field) '((c cd) ... (v vd) ... a ...) equal? 'gi "incompatible automatic field") ...
(check-field (map car (gi 'common-field)) '(c ...) eq? 'gi "incompatible common field") ...
(check-field (map car (gi 'virtual-field)) '(v ...) eq? 'gi "incompatible virtual field") ...
(check-field (map car (gi 'hidden-field)) '(h ...) eq? 'gi "incompatible hidden field") ...
(check-field (append (gr 'read-write-field) (gr 'read-only-field) (map car (gr 'hidden-field))) '(fm ... fi ... h ...) eq? 'gr "incompatible whole field") ...
(list gi ... gr ...)))
(define safe-name 'tmp)
;; Alist, vector/enum, vector/alist or hashtable can be used instead of
;; unquote-get & unquote-set! according to your implementation.
;; cf. (eval-variant expression implementation-specific-namespace)
;; An example of vector/enum:
;; (define enum-a (make-enumeration '(fm ... fi ...)))
;; (define enum-m (make-enumeration '(fm ...)))
;; (define enum-index-a (enum-set-indexer enum-a))
;; (define enum-index-m (enum-set-indexer enum-m))
;; (define makers
;; (let* ((c cd) ...)
;; (cons (seq-lambda () (r ...) (o ...)
;; (let* (a ... (array (vector (lambda (x) (if (eq? enum-index-a x) fm (set! fm x))) ... (lambda (x) id) ...)))
;; (define *%lambda-object%*
;; (lambda (arg . args)
;; (if (null? args)
;; (let ((n (enum-index-a arg)))
;; (if n
;; ((vector-ref array n) enum-index-a)
;; (error 'define-lambda-object "absent field" arg)))
;; (if (null? (cdr args))
;; (let ((n (enum-index-m arg)))
;; (if n
;; ((vector-ref array n) (car args))
;; (if (enum-set-member? arg enum-a)
;; (error 'define-lambda-object "read-only field" arg)
;; (error 'define-lambda-object "absent field" arg))))
;; safe-name))))
;; *%lambda-object%*))
;; (key-lambda () (r ...) (o ...)
;; (let* (a ... (array (vector (lambda (x) (if (eq? enum-index-a x) fm (set! fm x))) ... (lambda (x) id) ...)))
;; (define *%lambda-object%*
;; (lambda (arg . args)
;; (if (null? args)
;; (let ((n (enum-index-a arg)))
;; (if n
;; ((vector-ref array n) enum-index-a)
;; (error 'define-lambda-object "absent field" arg)))
;; (if (null? (cdr args))
;; (let ((n (enum-index-m arg)))
;; (if n
;; ((vector-ref array n) (car args))
;; (if (enum-set-member? arg enum-a)
;; (error 'define-lambda-object "read-only field" arg)
;; (error 'define-lambda-object "absent field" arg))))
;; safe-name))))
;; *%lambda-object%*)))))
(define makers
(let* ((c cd) ...)
(cons (seq-lambda () (r ...) (o ...)
(let* (a ...)
(define *%lambda-object%*
(lambda (arg . args)
(if (null? args)
(unquote-get arg ((fm fm) ... (fi id) ...))
(if (null? (cdr args))
(unquote-set! arg (car args) (fm ...) (fi ...))
safe-name))))
*%lambda-object%*))
(key-lambda () (r ...) (o ...)
(let* (a ...)
(define *%lambda-object%*
(lambda (arg . args)
(if (null? args)
(unquote-get arg ((fm fm) ... (fi id) ...))
(if (null? (cdr args))
(unquote-set! arg (car args) (fm ...) (fi ...))
safe-name))))
*%lambda-object%*)))))
(define make-object (car makers))
(define make-object-by-name (cdr makers))
;; The predicate procedure is implementation dependant.
(define (pred-object object)
(and (eq? '*%lambda-object%* (object-name object)) ;mzscheme
(let ((group (object #f #f #f)))
(or (eq? safe-name group)
(let lp ((group-list (group 'parent)))
(if (null? group-list)
#f
(or (eq? safe-name (car group-list))
(lp ((car group-list) 'parent))
(lp (cdr group-list)))))))))
(define name
(let ((parent safe-parent)
(constructor makers)
(predicate pred-object)
(read-write-field '(fm ...))
(read-only-field '(fi ...))
(required-field '(r ...))
(optional-field '(o ...))
(automatic-field '((c cd) ... (v vd) ... a ...))
(common-field '((c cd) ...))
(virtual-field '((v vd) ...))
(hidden-field '((h hd) ...)))
(lambda (symbol)
(unquote-get* symbol (parent constructor predicate
read-write-field read-only-field
required-field optional-field
automatic-field common-field
virtual-field hidden-field)))))
(define tmp (set! safe-name name))))))
(define-syntax define-make-object
(lambda (x)
(syntax-case x ()
((_ nm gr gi fm fi r o a c v h)
(let ((name (syntax->datum #'nm)))
(let ((make-obj (string->symbol (string-append "make-" (symbol->string name))))
(make-obj-by-name (string->symbol (string-append "make-" (symbol->string name) "-by-name")))
(pred-obj (string->symbol (string-append (symbol->string name) "?"))))
(with-syntax
((make-object (datum->syntax #'nm make-obj))
(make-object-by-name (datum->syntax #'nm make-obj-by-name))
(pred-object (datum->syntax #'nm pred-obj)))
#'(define-object nm make-object make-object-by-name pred-object gr gi fm fi r o a c v h))))))))
(define-syntax field-sort
(syntax-rules (quote unquote quasiquote)
((field-sort gr gi (fm ...) fi r o a (c ...) v h (((,,n) d) . e))
(field-sort gr gi (fm ... n) fi r o a (c ... (n d)) v h e))
((field-sort gr gi fm (fi ...) r o a (c ...) v h ((,,n d) . e))
(field-sort gr gi fm (fi ... (n n)) r o a (c ... (n d)) v h e))
((field-sort gr gi fm fi r o (a ...) c v (h ...) ((',n d) . e))
(field-sort gr gi fm fi r o (a ... (n d)) c v (h ... (n d)) e))
((field-sort gr gi fm (fi ...) r o a c (v ...) h ((`,n d) . e))
(field-sort gr gi fm (fi ... (n d)) r o a c (v ... (n d)) h e))
((field-sort gr gi (fm ...) fi r o (a ...) c v h (((,n) d) . e))
(field-sort gr gi (fm ... n) fi r o (a ... (n d)) c v h e))
((field-sort gr gi fm (fi ...) r o (a ...) c v h ((,n d) . e))
(field-sort gr gi fm (fi ... (n n)) r o (a ... (n d)) c v h e))
((field-sort gr gi fm fi r (o ...) () () () (h ...) (('n d) . e))
(field-sort gr gi fm fi r (o ... (n d)) () () () (h ... (n d)) e))
((field-sort gr gi (fm ...) fi r (o ...) () () () h (((n) d) . e))
(field-sort gr gi (fm ... n) fi r (o ... (n d)) () () () h e))
((field-sort gr gi fm (fi ...) r (o ...) () () () h ((n d) . e))
(field-sort gr gi fm (fi ... (n n)) r (o ... (n d)) () () () h e))
((field-sort gr gi (fm ...) fi (r ...) () () () () () ((n) . e))
(field-sort gr gi (fm ... n) fi (r ... n) () () () () () e))
((field-sort gr gi fm (fi ...) (r ...) () () () () () (n . e))
(field-sort gr gi fm (fi ... (n n)) (r ... n) () () () () () e))
((field-sort gr (name gi ...) fm fi r o a c v h ())
(define-make-object name gr (gi ...) fm fi r o a c v h))))
(define-syntax group-sort
(syntax-rules ()
((group-sort (gr ...) (gi ...) ((g) gg ...) f)
(group-sort (gr ... g) (gi ...) (gg ...) f))
((group-sort (gr ...) (gi ...) (g gg ...) f)
(group-sort (gr ...) (gi ... g) (gg ...) f))
((group-sort () () g f)
(group-sort () (g) () f))
((group-sort gr gi () f)
(field-sort gr gi () () () () () () () () f))))
(define-syntax define-lambda-object
(syntax-rules ()
((define-lambda-object g . f)
(group-sort () () g f))))
;;; define-lambda-object --- define-macro
(define-macro (unquote-get symbol args)
(if (null? args)
`(error 'define-lambda-object "absent field" ,symbol)
(let ((arg (car args)))
`(if (eq? ,symbol ',(car arg))
,(cdr arg)
(unquote-get ,symbol ,(cdr args))))))
(define-macro (unquote-get* symbol args)
(if (null? args)
`(error 'define-lambda-object "not available inspection" ,symbol)
(let ((arg (car args)))
`(if (eq? ,symbol ',arg)
,arg
(unquote-get* ,symbol ,(cdr args))))))
(define-macro (unquote-set! symbol new-val args iargs)
(define (lp args)
(if (null? args)
`(if (memq ,symbol ',iargs)
(error 'define-lambda-object "read-only field" ,symbol)
(error 'define-lambda-object "absent field" ,symbol))
(let ((arg (car args)))
`(if (eq? ,symbol ',arg)
(set! ,arg ,new-val)
,(lp (cdr args))))))
(lp args))
(define-macro (seq-lambda r o body)
(define (opt-seq z cls body)
(if (null? cls)
`(if (null? ,z)
,body
(error 'define-lambda-object "too many arguments" ,z))
(let ((cl (car cls)))
`(let ((,(car cl) (if (null? ,z) ,(cadr cl) (car ,z)))
(,z (if (null? ,z) ,z (cdr ,z))))
,(opt-seq z (cdr cls) body)))))
(if (null? o)
`(lambda ,r ,body)
(let ((z (gensym)))
`(lambda (,@r . ,z)
,(opt-seq z o body)))))
;; Choose either procedure type or macro type according to your implementation.
;; 1. procedure field-key
(define (field-key z k d)
(let ((x (car z)) (y (cdr z)))
(if (null? y)
(cons d z)
(if (eq? k x)
y
(let lp ((head (list x (car y))) (tail (cdr y)))
(if (null? tail)
(cons d z)
(let ((x (car tail)) (y (cdr tail)))
(if (null? y)
(cons d z)
(if (eq? k x)
(cons (car y) (append head (cdr y)))
(lp (cons x (cons (car y) head)) (cdr y)))))))))))
;; 2. macro field-key!
(define-macro (field-key! z n d)
(let ((x (gensym)) (y (gensym)) (head (gensym)) (tail (gensym)))
`(let ((,x (car ,z)) (,y (cdr ,z)))
(if (null? ,y)
,d
(if (eq? ',n ,x)
(begin (set! ,z (cdr ,y)) (car ,y))
(let lp ((,head (list ,x (car ,y)))
(,tail (cdr ,y)))
(if (null? ,tail)
,d
(let ((,x (car ,tail)) (,y (cdr ,tail)))
(if (null? ,y)
,d
(if (eq? ',n ,x)
(begin (set! ,z (append ,head (cdr ,y)))
(car ,y))
(lp (cons ,x (cons (car ,y) ,head)) (cdr ,y))))))))))))
(define-macro (key-lambda r o body)
(define (opt-key z cls body)
(if (null? cls)
`(if (null? ,z)
,body
(error 'define-lambda-object "too many arguments" ,z))
(let ((cl (car cls)))
(let ((var (car cl)) (val (cadr cl)))
;; 1. procedure field-key
`(let* ((,z (if (null? ,z) (cons ,val ,z) (field-key ,z ',var ,val)))
(,var (car ,z))
(,z (cdr ,z)))
;; 2. macro field-key!
;; `(let* ((,var (if (null? ,z) ,val (field-key! ,z ,var ,val))))
,(opt-key z (cdr cls) body))))))
(if (null? o)
`(lambda ,r ,body)
(let ((z (gensym)))
`(lambda (,@r . ,z) ,(opt-key z o body)))))
(define (check-duplicate ls err-str)
(cond ((null? ls) #f)
((memq (car ls) (cdr ls)) (error 'define-lambda-object err-str (car ls)))
(else (check-duplicate (cdr ls) err-str))))
(define (check-field part-list main-list cmp name err-str)
(let lp ((part part-list) (main main-list))
(if (null? part)
main
(if (null? main)
(error 'define-lambda-object err-str name (car part))
(let ((field (car part)))
(if (cmp field (car main))
(lp (cdr part) (cdr main))
(let loop ((head (list (car main))) (tail (cdr main)))
(if (null? tail)
(error 'define-lambda-object err-str name field)
(if (cmp field (car tail))
(lp (cdr part) (append head (cdr tail)))
(loop (cons (car tail) head) (cdr tail)))))))))))
;; (define (number-alist ls)
;; (let loop ((ls ls) (n 0))
;; (if (null? ls)
;; '()
;; (cons (cons (car ls) n) (loop (cdr ls) (+ 1 n))))))
(define-macro (define-object name gr gi fm fi r o a c v h)
(let ((safe-name (gensym))
(safe-parent (gensym))
(arg (gensym))
(args (gensym))
(makers (gensym))
;; (alist-a (gensym))
;; (alist-m (gensym))
;; (array (gensym))
;; (safe-eq (gensym))
;; (safe-arg (gensym))
(group-name (symbol->string name)))
(let ((make-object (string->symbol (string-append "make-" group-name)))
(make-object-by-name (string->symbol (string-append "make-" group-name "-by-name")))
(pred-object (string->symbol (string-append group-name "?"))))
`(begin
(define ,safe-parent
(begin
;; check duplication
(check-duplicate (append (list ',name) ',gi ',gr) "duplicated group")
(check-duplicate ',(append fm (map car fi) (map car h)) "duplicated field")
;; check field
(for-each (lambda (g y)
(check-field (g 'read-write-field) ',fm eq? y "incompatible read-write field")
(check-field (g 'read-only-field) ',(map car fi) eq? y "incompatible read-only field")
(check-field (g 'required-field) ',r eq? y "incompatible required field")
(check-field (g 'optional-field) ',o equal? y "incompatible optional field")
(check-field (g 'automatic-field) ',(append c v a) equal? y "incompatible automatic field")
(check-field (map car (g 'common-field)) ',(map car c) eq? y "incompatible common field")
(check-field (map car (g 'virtual-field)) ',(map car v) eq? y "incompatible virtual field")
(check-field (map car (g 'hidden-field)) ',(map car h) eq? y "incompatible hidden field"))
(list ,@gi) ',gi)
(for-each (lambda (g y)
(check-field (append (g 'read-write-field) (g 'read-only-field) (map car (g 'hidden-field))) ',(append fm (map car fi) (map car h)) eq? y "incompatible whole field"))
(list ,@gr) ',gr)
(list ,@gi ,@gr)))
;; Alist, vector/enum, vector/alist or hashtable can be used instead of
;; unquote-get & unquote-set! according to your implementation.
;; cf. (eval-variant expression implementation-specific-namespace)
;; An example of vector/alist:
;; (define ,alist-a (number-alist ',(append fm (map car fi))))
;; (define ,alist-m (number-alist ',fm))
;; (define ,makers
;; (let* ,c
;; (cons (seq-lambda ,r ,o
;; (let* (,@a (,array (vector ,@(map (lambda (f) `(lambda (,safe-arg) (if (eq? ,safe-arg ',safe-eq) ,f (set! ,f ,safe-arg)))) fm) ,@(map (lambda (f) `(lambda (,safe-arg) ,f)) (map cdr fi)))))
;; (define *%lambda-object%*
;; (lambda (,arg . ,args)
;; (if (null? ,args)
;; (let ((pair (assq ,arg ,alist-a)))
;; (if pair
;; ((vector-ref ,array (cdr pair)) ',safe-eq)
;; (error 'define-lambda-object "absent field" ,arg)))
;; (if (null? (cdr ,args))
;; (let ((pair (assq ,arg ,alist-m)))
;; (if pair
;; ((vector-ref ,array (cdr pair)) (car ,args))
;; (if (assq ,arg ',fi)
;; (error 'define-lambda-object "read-only field" ,arg)
;; (error 'define-lambda-object "absent field" ,arg))))
;; ,safe-name))))
;; *%lambda-object%*))
;; (key-lambda ,r ,o
;; (let* (,@a (,array (vector ,@(map (lambda (f) `(lambda (,safe-arg) (if (eq? ,safe-arg ',safe-eq) ,f (set! ,f ,safe-arg)))) fm) ,@(map (lambda (f) `(lambda (,safe-arg) ,f)) (map cdr fi)))))
;; (define *%lambda-object%*
;; (lambda (,arg . ,args)
;; (if (null? ,args)
;; (let ((pair (assq ,arg ,alist-a)))
;; (if pair
;; ((vector-ref ,array (cdr pair)) ',safe-eq)
;; (error 'define-lambda-object "absent field" ,arg)))
;; (if (null? (cdr ,args))
;; (let ((pair (assq ,arg ,alist-m)))
;; (if pair
;; ((vector-ref ,array (cdr pair)) (car ,args))
;; (if (assq ,arg ',fi)
;; (error 'define-lambda-object "read-only field" ,arg)
;; (error 'define-lambda-object "absent field" ,arg))))
;; ,safe-name))))
;; *%lambda-object%*)))))
(define ,makers
(let* ,c
(cons (seq-lambda ,r ,o
(let* ,a
(define *%lambda-object%*
(lambda (,arg . ,args)
(if (null? ,args)
(unquote-get ,arg ,(append (map cons fm fm) fi))
(if (null? (cdr ,args))
(unquote-set! ,arg (car ,args) ,fm ,(map car fi))
,safe-name))))
*%lambda-object%*))
(key-lambda ,r ,o
(let* ,a
(define *%lambda-object%*
(lambda (,arg . ,args)
(if (null? ,args)
(unquote-get ,arg ,(append (map cons fm fm) fi))
(if (null? (cdr ,args))
(unquote-set! ,arg (car ,args) ,fm ,(map car fi))
,safe-name))))
*%lambda-object%*)))))
(define ,make-object (car ,makers))
(define ,make-object-by-name (cdr ,makers))
;; The predicate procedure is implementation dependant.
(define (,pred-object object)
(and (eq? '*%lambda-object%* (object-name object)) ;mzscheme
(let ((group (object #f #f #f)))
(or (eq? ,safe-name group)
(let lp ((group-list (group 'parent)))
(if (null? group-list)
#f
(or (eq? ,safe-name (car group-list))
(lp ((car group-list) 'parent))
(lp (cdr group-list)))))))))
(define ,name
(let ((parent ,safe-parent)
(constructor ,makers)
(predicate ,pred-object)
(read-write-field ',fm)
(read-only-field ',(map car fi))
(required-field ',r)
(optional-field ',o)
(automatic-field ',(append c v a))
(common-field ',c)
(virtual-field ',v)
(hidden-field ',h))
(lambda (symbol)
(unquote-get* symbol (parent constructor predicate
read-write-field read-only-field
required-field optional-field
automatic-field common-field
virtual-field hidden-field)))))
(define ,safe-name ,name)))))
(define-macro (define-lambda-object group . field)
(define (field-sort gr gi field fm fi r o a c v h)
(if (null? field)
`(define-object ,(car gi) ,gr ,(cdr gi) ,fm ,fi ,r ,o ,a ,c ,v ,h)
(let ((vars (car field)))
(if (symbol? vars) ;r
(if (and (null? o) (null? a) (null? c) (null? v))
(field-sort gr gi (cdr field)
fm (append fi (list (cons vars vars)))
(append r (list vars)) o a c v h)
(error 'define-lambda-object "required-field should precede optional-field and automatic-field" vars))
(let ((var (car vars)))
(if (symbol? var)
(if (null? (cdr vars)) ;(r)
(if (and (null? o) (null? a) (null? c) (null? v))
(field-sort gr gi (cdr field)
(append fm vars) fi
(append r vars) o a c v h)
(error 'define-lambda-object "required-field should precede optional-field and automatic-field" var))
(if (null? (cddr vars)) ;(o val)
(if (and (null? a) (null? c) (null? v))
(field-sort gr gi (cdr field)
fm (append fi (list (cons var var)))
r (append o (list vars)) a c v h)
(error 'define-lambda-object "optional-field should precede automatic-field" var))
(error 'define-lambda-object "incorrect syntax" vars)))
(if (and (pair? (cdr vars)) (null? (cddr vars)))
(let ((b (car var)))
(if (symbol? b)
(if (null? (cdr var)) ;((o) val)
(if (and (null? a) (null? c) (null? v))
(field-sort gr gi (cdr field)
(append fm var) fi
r (append o (list (cons b (cdr vars)))) a c v h)
(error 'define-lambda-object "optional-field should precede automatic-field" b))
(if (null? (cddr var))
(let ((d (cadr var)))
(if (symbol? d)
(if (eq? 'unquote b) ;(,a val)
(field-sort gr gi (cdr field)
fm (append fi (list (cons d d)))
r o (append a (list (cons d (cdr vars)))) c v h)
(if (eq? 'quote b) ;('o val)
(if (and (null? a) (null? c) (null? v))
(field-sort gr gi (cdr field)
fm fi
r (append o (list (cons d (cdr vars)))) a c v (append h (list (cons d (cdr vars)))))
(error 'define-lambda-object "optional-field should precede automatic-field" b))
(error 'define-lambda-object "incorrect syntax" vars)))
(if (and (eq? 'unquote (car d)) (symbol? (cadr d)) (null? (cddr d)))
(if (eq? 'unquote b) ;(,,a val)
(field-sort gr gi (cdr field)
fm (append fi (list (cons (cadr d) (cadr d))))
r o a (append c (list (cons (cadr d) (cdr vars)))) v h)
(if (eq? 'quote b) ;(',a val)
(field-sort gr gi (cdr field)
fm fi
r o (append a (list (cons (cadr d) (cdr vars)))) c v (append h (list (cons (cadr d) (cdr vars)))))
(if (eq? 'quasiquote b) ;(`,a val)
(field-sort gr gi (cdr field)
fm (append fi (list (cons (cadr d) (cadr vars))))
r o a c (append v (list (cons (cadr d) (cdr vars)))) h)
(error 'define-lambda-object "incorrect syntax" vars))))
(error 'define-lambda-object "incorrect syntax" vars))))
(error 'define-lambda-object "incorrect syntax" vars)))
(if (and (null? (cdr var)) (eq? 'unquote (car b)) (null? (cddr b)))
(if (symbol? (cadr b)) ;((,a) val)
(field-sort gr gi (cdr field)
(append fm (cdr b)) fi
r o (append a (list (cons (cadr b) (cdr vars)))) c v h)
(let ((e (cadr b)))
(if (and (eq? 'unquote (car e)) (symbol? (cadr e)) (null? (cddr e))) ;((,,a) val)
(field-sort gr gi (cdr field)
(append fm (cdr e)) fi
r o a (append c (list (cons (cadr e) (cdr vars)))) v h)
(error 'define-lambda-object "incorrect syntax" vars))))
(error 'define-lambda-object "incorrect syntax" vars))))
(error 'define-lambda-object "incorrect syntax" vars))))))))
(define (group-sort gr gi gg field)
(if (pair? gg)
(let ((g (car gg)))
(if (pair? g)
(group-sort (append gr g) gi (cdr gg) field)
(group-sort gr (append gi (list g)) (cdr gg) field)))
(if (symbol? gg)
(group-sort gr (cons gg gi) '() field)
(field-sort gr gi field '() '() '() '() '() '() '() '()))))
(group-sort '() '() group field))
;;; eof
References
[R6RS] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and
Anton von Straaten:
Revised(6) Report on the Algorithmic Language Scheme
http://www.r6rs.org
[SRFI 9] Richard Kelsey: Defining Record Type
http://srfi.schemers.org/srfi-9
[On Lisp] Paul Graham:
http://www.paulgraham.com/onlisp.html
Copyright