-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogoRec.lua
371 lines (331 loc) · 13.1 KB
/
logoRec.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
-----------------------------------------------------------------------------------
-- Implementation of a RCNN for logo recognition for the 'Advanced Methods in
-- Machine Learning' course (SS2017)
--
-- Authors: Tofunmi Ajayi, Ping Lu, Fisnik Mengjiqi, Roman Schindler
-----------------------------------------------------------------------------------
require 'torch'
require 'image'
require 'nn'
require 'optim'
require 'gnuplot'
--require 'cutorch'
--require 'cunn'
-- Global variables
dataset_path = "FlickrLogos-v2/"
bbox_path = "FlickrLogos-v2/classes/masks/"
images_path = "FlickrLogos-v2/classes/jpg/"
roi_path = "regions/"
-- The different classes
classes ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
-- Define the label mappings (In the network, each class is represented by a number)
labelMapping = {}
labelMapping['adidas'] = 1
labelMapping['aldi'] = 2
labelMapping['apple'] = 3
labelMapping['becks'] = 4
labelMapping['bmw'] = 5
labelMapping['carlsberg'] = 6
labelMapping['chimay'] = 7
labelMapping['cocacola'] = 8
labelMapping['corona'] = 9
labelMapping['dhl'] = 10
labelMapping['erdinger'] = 11
labelMapping['esso'] = 12
labelMapping['fedex'] = 13
labelMapping['ferrari'] = 14
labelMapping['ford'] = 15
labelMapping['fosters'] = 16
labelMapping['google'] = 17
labelMapping['guiness'] = 18
labelMapping['heineken'] = 19
labelMapping['HP'] = 20
labelMapping['milka'] = 21
labelMapping['nvidia'] = 22
labelMapping['paulaner'] = 23
labelMapping['pepsi'] = 24
labelMapping['rittersport'] = 25
labelMapping['shell'] = 26
labelMapping['singha'] = 27
labelMapping['starbucks'] = 28
labelMapping['stellaartois'] = 29
labelMapping['texaco'] = 30
labelMapping['tsingtao'] = 31
labelMapping['ups'] = 32
labelMapping['no'] = 33
labelMapping['no-logo'] = 33
labelMapping[1] = 'adidas'
labelMapping[2] = 'aldi'
labelMapping[3] = 'apple'
labelMapping[4] = 'becks'
labelMapping[5] = 'bmw'
labelMapping[6] = 'carlsberg'
labelMapping[7] = 'chimay'
labelMapping[8] = 'cocacola'
labelMapping[9] = 'corona'
labelMapping[10] = 'dhl'
labelMapping[11] = 'erdinger'
labelMapping[12] = 'esso'
labelMapping[13] = 'fedex'
labelMapping[14] = 'ferrari'
labelMapping[15] = 'ford'
labelMapping[16] = 'fosters'
labelMapping[17] = 'google'
labelMapping[18] = 'guiness'
labelMapping[19] = 'heineken'
labelMapping[20] = 'HP'
labelMapping[21] = 'milka'
labelMapping[22] = 'nvidia'
labelMapping[23] = 'paulaner'
labelMapping[24] = 'pepsi'
labelMapping[25] = 'rittersport'
labelMapping[26] = 'shell'
labelMapping[27] = 'singha'
labelMapping[28] = 'starbucks'
labelMapping[29] = 'stellaartois'
labelMapping[30] = 'texaco'
labelMapping[31] = 'tsingtao'
labelMapping[32] = 'ups'
labelMapping[33] = 'no-logo'
-- Function to read data files (containing image-filenames and contained logo)
-- in: data_file (string) - filename of the data file
-- positives_only (bool) - if true, only samples with a logo are loaded
-- out: table containing the samples which contain label, logo bounding box
-- and filename of the corresponding image
function read_data(data_file, positives_only)
-- open the specified txt-file and read it line by line
local samples = {}
local file = io.open(dataset_path .. data_file)
if file then
for line in file:lines() do
-- read label and filename
local label, filename = unpack(line:split(","))
filename = string.sub(filename,1,#filename-1)
-- skip no-logo samples if we want positive samples only
if ((label ~= 'no-logo') or (positives_only == false)) then
-- from the filename, construct filename of corresponding bbox-file
local bbox_filename = bbox_path .. label .. "/" .. filename .. ".bboxes.txt"
-- create sample i.e. a table containing label, filename and bbox
local sample = {}
sample.label = label
sample.image_file = filename
sample.bbox = read_boundingboxes(bbox_filename)
-- add new sample to the collection of samples
table.insert(samples,sample)
end
end
file:close()
end
return samples
end
-- Function to read bounding box files which contain the bounding box of the logo in an image
-- in: bbox_file (string) - filename of the bounding box file
-- out: table of bboxes (each bbox a table with x and y of upper left corner, width and height)
function read_boundingboxes(bbox_file)
local boundingboxes = {}
local file = io.open(bbox_file)
if file then
local header = true
for line in file:lines() do
if not header then
local x, y, w, h = unpack(line:split(" "))
local boundingbox = {}
boundingbox['x'] = tonumber(x)
boundingbox['y'] = tonumber(y)
boundingbox['w'] = tonumber(w)
boundingbox['h'] = tonumber(h)
table.insert(boundingboxes,boundingbox)
else
header = false
end
end
file:close()
else
-- dummy bounding box for images with no logos
local boundingbox = {}
boundingbox['x'] = 1
boundingbox['y'] = 1
boundingbox['w'] = 0
boundingbox['h'] = 0
table.insert(boundingboxes,boundingbox)
end
return boundingboxes
end
-- Function that searches regions of interest by selective search. The selective
-- search results for each image were precomputed with a python implementation
-- and stored to txt-files. This function just reads these precomputed results
-- and is thus just imitating an actual implementation of selective search
-- in: sample (table) - a sample-table containing image-file, label and bbox
-- out: table containing the regions (x,y,w,h-table) for the input image
function selective_search(sample)
local regions = {}
local filename = string.sub(sample.image_file,1,#sample.image_file-4)
filename = roi_path .. filename .. ".txt"
local file = io.open(filename)
if file then
local header = true
for line in file:lines() do
if not header then
local x, y, w, h = unpack(line:split(" "))
local region = {}
region['x'] = tonumber(x)
region['y'] = tonumber(y)
region['w'] = tonumber(w)
region['h'] = tonumber(h)
table.insert(regions,region)
else
header = false
end
end
file:close()
end
return regions
end
-- Fuction that annotates a region with a label by comparing the region
-- to the ground truth logo bounding box
-- in: sample (table) - a sample-table containing image-file, label and bbox
-- region (table) - a table containing x,y,w,h of the region to annotate
-- out: The label of the region (either a logo-name or 'no-logo')
function annotate_region(sample, region)
local label = sample.label
-- compare region to every logo-boundingbox of the sample
for i,bbox in ipairs(sample.bbox) do
local iou = intersection_over_union(bbox, region)
if (iou > 0.4) then
return label
end
end
return 'no-logo'
end
-- Function to compute the IoU between two rectangles
-- in: bbox (table) - a table containing x,y,w,h describing a rectangle
-- region (table) - a table containing x,y,w,h describing a rectangle
-- out: The IoU between the two rectangles (a value between 0 and 1)
function intersection_over_union(bbox,region)
-- get coordinates of two corners of first rectangle
local a_x1 = bbox['x']
local a_y1 = bbox['y']
local a_x2 = a_x1 + bbox['w']
local a_y2 = a_y1 + bbox['h']
-- get coordinates of two corners of second rectangle
local b_x1 = region['x']
local b_y1 = region['y']
local b_x2 = b_x1 + region['w']
local b_y2 = b_y1 + region['h']
-- return 0 if no intersection at all
if (a_x1>b_x2 or a_x2<b_x1 or a_y1>b_y2 or a_y2<b_y1) then
return 0.0
end
-- determine the (x, y)-coordinates of the intersection rectangle
local xA = math.max(a_x1, b_x1)
local yA = math.max(a_y1, b_y1)
local xB = math.min(a_x2, b_x2)
local yB = math.min(a_y2, b_y2)
-- compute the area of intersection rectangle
local interArea = (xB - xA + 1) * (yB - yA + 1)
-- compute the area of both the prediction and ground-truth rectangles
local boxAArea = (a_x2 - a_x1 + 1) * (a_y2 - a_y1 + 1)
local boxBArea = (b_x2 - b_x1 + 1) * (b_y2 - b_y1 + 1)
-- compute the intersection over union by taking the intersection
-- area and dividing it by the sum of prediction + ground-truth
-- areas - the interesection area (+0.001 in case of division by zero)
local iou = interArea / (boxAArea + boxBArea - interArea + 0.001)
return iou
end
-- Function to blur an image with a gaussian convolution
-- in: img (tensor) - a bytetensor representing the image to blur
-- out: the blurred image (by 20x20 kernel) as bytetensor
function blur_image(img)
local kernel = image.gaussian(20,1,0.25,true)
img = img:double()/255
img = image.convolve(img,kernel,'same')
img = img*255
img = img:byte()
return img
end
-- Function to load an image from a sample-table
-- in: sample (table) - a sample-table containing image-file, label and bbox
-- out: a bytetensor representing the loaded image
function load_image(sample)
-- load the image using the sample's image-filename
local img_filename = images_path .. sample.label .. "/" .. sample.image_file
local img = image.load(img_filename,3,'byte')
return img
end
-- Function that cuts out a specified area from an image
-- in: img (tensor) - a bytetensor representing the image to blur
-- region (table) - a table containing x,y,w,h of the desired region to crop
-- out: 3xmxn ByteTensor representing the cropped region
function crop_region(img, region)
-- extract the specified region from the image-matrix
local x1 = region['x']
local y1 = region['y']
local x2 = x1 + region['w']
local y2 = y1 + region['h']
local cropped_region = image.crop(img,x1,y1,x2,y2)
return cropped_region
end
-- Function that generates the actual images used for training (cut out logos and
-- region proposals from the training images)
-- in: output_folder (string) - name of the folder to store the data
-- trainset (string) - name of the txt-file containing the image filenames
-- and their logo
-- augmentation (bool) - if true, we add blurred images to the dataset
-- out: table containing the generated images we use for training
function generate_training_data(output_folder, trainset, augmentation)
-- load the specified dataset and only samples that contain a logo
samples = read_data(trainset,true)
-- table that stores the generated training images
local training_data = {}
-- extract all logos from the training images using gt-bounding box
for i,sample in ipairs(samples) do
local img = load_image(sample)
if augmentation then
img_blurred = blur_image(img)
end
for j,bbox in ipairs(sample.bbox) do
local generated_sample = {}
local logo = crop_region(img,bbox)
generated_sample.img = image.scale(logo,32,32)
generated_sample.label = sample.label
table.insert(training_data,generated_sample)
if (augmentation) then
local generated_sample_blurred = {}
logo_blurred = crop_region(img_blurred,bbox)
generated_sample_blurred.img = image.scale(logo_blurred,32,32)
generated_sample_blurred.label = sample.label
table.insert(training_data,generated_sample_blurred)
end
end
end
-- compute region proposals for each training image and annotate them
for i,sample in ipairs(samples) do
local regions = selective_search(sample)
local img = load_image(sample)
if augmentation then
img_blurred = blur_image(img)
end
for j,reg in ipairs(regions) do
local generated_sample = {}
local label = annotate_region(sample,reg)
local reg_img = crop_region(img,reg)
generated_sample.img = image.scale(reg_img,32,32)
generated_sample.label = label
table.insert(training_data,generated_sample)
if (augmentation) then
local generated_sample_blurred = {}
reg_img_blurred = crop_region(img_blurred,reg)
generated_sample_blurred.img = image.scale(reg_img_blurred,32,32)
generated_sample_blurred.label = label
table.insert(training_data,generated_sample_blurred)
end
end
print('progress: ' .. tostring(i) .. ' / ' .. tostring(#samples))
end
-- Save the generated images to folder
for i,sample in ipairs(training_data) do
image.save(output_folder .. '/' .. sample.label .. '_' .. tostring(i) .. '.jpg', sample.img)
end
-- return the generated training samples
return training_data
end