-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathregion_generator.py
171 lines (134 loc) · 4.35 KB
/
region_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import skimage
import matplotlib.pyplot as plt
import selectivesearch
import numpy as np
from PIL import Image
dataset_path = "FlickrLogos-v2/"
bbox_path = "FlickrLogos-v2/classes/masks/"
images_path = "FlickrLogos-v2/classes/jpg/"
DIRACTORY_VAL= "regions/"
def create_folders():
if not os.path.exists(DIRACTORY_VAL):
os.makedirs(DIRACTORY_VAL)
# -- Function that ....
# --
# --
def read_data(data_file):
samples = {}
with open(dataset_path + data_file, 'r') as f:
for line in f:
label, filename = line.split(",")
#if (label != "no-logo"):
filename = filename.rstrip()
sample_dic = {}
sample_dic['label'] = label
samples[filename] = sample_dic
return samples
# -- Function that ....
# --
# --
def read_boundingboxes(bbox_file):
boundingbox = {}
with open(bbox_file,'r') as f:
header = True
for line in f:
if not header:
x,y,w,h = line.split(" ")
boundingbox['x'] = int(x)
boundingbox['y'] = int(y)
boundingbox['w'] = int(w)
boundingbox['h'] = int(h.rstrip())
else:
header=False
return boundingbox
# -- Function that generates annotated region proposals from an image using selective search
# --
# --
def generate_region_proposals(img_name,img_propery):
label = img_propery['label']
image_filename = images_path + label + "/" + img_name
img = Image.open(image_filename)
img_arr = np.asarray(img)
img_lbl, regions = selectivesearch.selective_search(img_arr, scale=500, sigma=0.9, min_size=10)
candidates = set()
# create a txt file where it saves generated regions for that image
path_region = DIRACTORY_VAL + img_name[:-4] + ".txt"
file = open(path_region,"w")
file.write("x y width height" + "\n")
for r in regions:
generated_sample_reg = {}
# excluding same rectangle (with different segments)
if r['rect'] in candidates:
continue
# excluding regions smaller than 2000 pixels
if r['size'] < 2000:
continue
# distorted rects
x, y, w, h = r['rect']
if w == 0 or h == 0:
continue
if w / h > 5 or h / w > 5:
continue
candidates.add(r['rect'])
#label = annotate_region(img_propery,r['rect'])
#save regions of a picture on a txt file
x, y, w, h = r['rect']
txt = str(x) + " " + str(y) + " " + str(w) + " " + str(h) + "\n"
file.write(txt)
file.close()
# -- Function that annotates an image region with a label (the logo name or 'no logo')
# -- by comparing it with the ground truth bounding box of the logo
# -- Returns: string representing the label of the input region
def annotate_region(prop, region):
label = prop['label']
box = prop['box']
iou = IOU(box,region)
# annotate
if (iou < 0.4):
label = 'no-logo'
return label
def IOU(box,region):
# get corner coordinates of bounding box
xA1 = box['x']
yA1 = box['y']
xA2 = xA1+box['w']
yA2 = yA1+box['h']
# get corner coordinates of region
xB1, yB1, wB, hB = region
xB2 = xB1 + wB
yB2 = yB1 + hB
# return 0 if no intersection at all
if (xA1>xB2 or xA2<xB1 or yA1>yB2 or yA2<yB1):
return 0.0
# determine the (x, y)-coordinates of the intersection rectangle
xA = max(xA1, xB1)
yA = max(yA1, yB1)
xB = min(xA2, xB2)
yB = min(yA2, yB2)
# compute the area of intersection rectangle
interArea = (xB - xA + 1) * (yB - yA + 1)
# compute the area of both the prediction and ground-truth
# rectangles
boxAArea = (xA2 - xA1 + 1) * (yA2 - yA1 + 1)
boxBArea = (xB2 - xB1 + 1) * (yB2 - yB1 + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area. +0.001 in case of division by zero.
iou = interArea / float(boxAArea + boxBArea - interArea + 0.001)
return iou
# -- Function that ....
# -- samples
# -- set : {1 for trainset.txt , 2 for trainvalset.txt }
def generate_training_data(samples):
i=0
for img_name,img_property in samples.items():
generate_region_proposals(img_name,img_property)
i+=1
print(i)
#-----------------------------------------------------------------
#-- Create output_python/ directory (folder)
create_folders()
#-- Read the dataset images
training_data = read_data("testset.txt")
generate_training_data(training_data)