-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_baseline.py
246 lines (189 loc) · 10.3 KB
/
train_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# File: train_maml
# ----------------
# Training script for models using MAML.
import argparse
import torch
import torch.nn.functional as F
import numpy as np
import logging
import time
import math
import higher
from tqdm import tqdm
from torch.utils.data import DataLoader
import utils
import constants
import vis_utils
from dataset.baseline_dataset import BaselineDataset
from dataset.maestro_dataset import MaestroDataset
from models.model_utils import initialize_model, save_model, save_entire_model
def get_arguments():
'''
Uses argparse to get the arguments for the experiment
'''
parser = argparse.ArgumentParser(description="Few-shot music generation with MAML")
# Optimization arguments
parser.add_argument("--lr", type=float, default=constants.BASELINE_LR,
help="The learning rate used for the optimization")
parser.add_argument("--num_epochs", type=int, default=constants.BASELINE_NUM_EPOCHS)
# Model architecture arguments
parser.add_argument("--embed_dim", type=int, default=constants.EMBED_DIM,
help="Embedding dimension for simple LSTM")
parser.add_argument("--hidden_dim", type=int, default=constants.HIDDEN_DIM,
help="Hidden dimension for simple LSTM")
parser.add_argument("--num_blocks", type=int, default=constants.NUM_BLOCKS,
help="Number of transformer blocks")
parser.add_argument("--num_heads", type=int, default=constants.NUM_HEADS,
help="Number of attention heads")
# Data loading arguments
parser.add_argument("--dataset", type=str, default="lakh",
help="The type of dataset to train on")
parser.add_argument("--batch_size", type=int, default=constants.BASELINE_BATCH_SIZE,
help="Batch size for training")
parser.add_argument("--num_workers", type=int, default=constants.NUM_WORKERS,
help="Number of threads to use in the data loader")
parser.add_argument("--context_len", type=int, default=constants.CONTEXT_LEN,
help="The length of the training snippets")
# Miscellaneous evaluation and checkpointing arguments
parser.add_argument("--model_type", type=str, default="SimpleLSTM", choices=constants.MODEL_TYPES,
help="The name of the model class to be used")
parser.add_argument("--report_train_every", type=int, default=constants.BASELINE_REPORT_TRAIN_EVERY,
help="Report the training accuracy every report_train_every iterations")
parser.add_argument("--evaluate_every", type=int, default=constants.BASELINE_VAL_EVERY,
help="Compute validation accuracy every evaluate_every iterations")
parser.add_argument("--save_checkpoint_every", type=int, default=constants.SAVE_CHECKPOINT_EVERY,
help="Save a model checkpoint every save_checkpoint_every iterations")
parser.add_argument("--load_from_iteration", type=int, default=-1,
help="Initialize the model with a checkpoint from the provided iteration."\
+"Setting -1 will start the model from scratch")
parser.add_argument("--num_test_iterations", type=int, default=constants.TESTING_ITERATIONS,
help="How many meta-test steps we wish to perform.")
parser.add_argument("--only_test", action='store_true',
help="If set, we only test model performance. Assumes that a checkpoint is supplied.")
# Experiment arguments
parser.add_argument("--experiment_name", type=str, default="baseline_test",
help="The name of the experiment (folder). This is where checkpoints, plots"\
+"and logs will reside.")
parser.add_argument("--log_name", type=str, default="train",
help="The name of the logging file")
parser.add_argument("--seed", type=int, default=-1,
help="Random seed for the experiment. -1 indicates that no seed be set")
# Parse and return
args = parser.parse_args()
return args
def train(model, dataloader, device, args):
# Set to train mode (train split)
dataloader.dataset.train()
# Initialize the optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# Initialize the validation loss list
validation_losses = []
iteration = 0
try:
for epoch in range(args.num_epochs):
with tqdm(dataloader, total=math.ceil(len(dataloader.dataset)/args.batch_size)) as progbar:
progbar.set_description("[Epoch {}/{}]. Running batches...".format(epoch, args.num_epochs))
for batch in progbar:
# print("Batch starting!")
batch = batch.to(device)
inputs, labels = batch[:, :-1], batch[:, 1:]
# print("Batch split! Input size: ", inputs.shape)
# The class dimension needs to go in the middle for the CrossEntropyLoss, and the
# necessary permute for this depends on the type of model
logits = model(inputs)
logits = logits.permute(0, 2, 1)
# print("Logits computed!")
# And the labels need to be (batch, additional_dims)
labels = labels.permute(1, 0)
loss = F.cross_entropy(logits, labels)
progbar.set_postfix(Loss=loss.item())
loss.backward()
optimizer.step()
optimizer.zero_grad()
# print("Loss propagated!")
if (iteration + 1) % args.report_train_every == 0:
logging.info("Average Training Loss for Iteration {}: {}".format(iteration + 1, loss))
if (iteration + 1) % args.evaluate_every == 0:
val_loss, _ = validate(model, dataloader, device, args)
logging.info("Average Validation Loss for Iteration {}: {}".format(iteration + 1, val_loss))
validation_losses.append(val_loss)
if (iteration + 1) % args.save_checkpoint_every == 0:
save_model(model, args.experiment_name, iteration + 1)
#save_entire_model(model, args.experiment_name, iteration + 1)
iteration += 1
except KeyboardInterrupt:
print("Interrupted training.")
save_model(model, args.experiment_name, iteration + 1)
#save_entire_model(model, args.experiment_name, iteration + 1)
pass
logging.info("We have finished training the model!")
return validation_losses
def validate(model, dataloader, device, args):
# First, set the dataloader's dataset into validation mode
dataloader.dataset.val()
# Then, set the model into evaluation mode
model.eval()
losses = []
with torch.no_grad():
for batch in tqdm(dataloader, desc='Validating', total=math.ceil(len(dataloader.dataset)/args.batch_size)):
batch = batch.to(device)
inputs, labels = batch[:, :-1], batch[:, 1:]
# The class dimension needs to go in the middle for the CrossEntropyLoss
logits = model(inputs)
logits = logits.permute(0, 2, 1)
# And the labels need to be (batch, additional_dims)
labels = labels.permute(1, 0)
loss = F.cross_entropy(logits, labels)
losses.append(loss.item())
# Finally, make sure to reset the dataset / model into training mode
dataloader.dataset.train()
model.train()
return np.mean(losses), np.std(losses)
def test(model, dataloader, device, args):
# First, set the dataloader's dataset into validation mode
dataloader.dataset.test()
# Then, set the model into evaluation mode
model.eval()
losses = []
with torch.no_grad():
for batch in tqdm(dataloader, desc='Testing', total=math.ceil(len(dataloader.dataset)/args.batch_size)):
batch = batch.to(device)
inputs, labels = batch[:, :-1], batch[:, 1:]
# The class dimension needs to go in the middle for the CrossEntropyLoss
logits = model(inputs)
logits = logits.permute(0, 2, 1)
# And the labels need to be (batch, additional_dims)
labels = labels.permute(1, 0)
loss = F.cross_entropy(logits, labels)
losses.append(loss.item())
# Finally, make sure to reset the dataset / model into training mode
dataloader.dataset.train()
model.train()
return np.mean(losses), np.std(losses)
if __name__ == '__main__':
# Get the training arguments
args = get_arguments()
# Initialize experiment folders
utils.initialize_experiment(args.experiment_name, args.log_name, args.seed, args)
# Initialize the model
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = initialize_model(args.experiment_name, args.model_type,
args.load_from_iteration, device, args, load_whole_object=False)
# Initialize the dataset
if args.dataset == "lakh":
dataset = BaselineDataset(tracks="all-no_drums", seq_len=args.context_len)
elif args.dataset == "maestro":
dataset = MaestroDataset(context_len=args.context_len, meta=False)
else:
raise ValueError(f"Dataset {args.dataset} not recognized. Should be lakh or maestro.")
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=0) # this is important else it hangs (multiprocessing issue?)
if not args.only_test:
# Train the model using MAML
validation_losses = train(model, dataloader, device, args)
# Visualize validation losses
vis_utils.plot_losses(validation_losses, args.evaluate_every, title="Validation Losses",
xlabel="Iterations", ylabel="Loss", folder=utils.get_plot_folder(args.experiment_name),
name="validation_losses.png")
mean_test_loss, test_loss_std = test(model, dataloader, device, args)
logging.info("The mean test loss was {} with standard deviation {}".format(mean_test_loss,
test_loss_std))