|
5 | 5 | Tutorials
|
6 | 6 | =========
|
7 | 7 |
|
8 |
| -All the tutorials are in tutorial directory. You can view them online, too. |
| 8 | +All the tutorials are in tutorial directory of the iminuit repository and `can be viewed online <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/>`_. |
9 | 9 |
|
10 |
| -`Basic tutorial <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/basic_tutorial.ipynb>`_ |
11 |
| ---------------------------------------------------------------------------------------------------------------------------------- |
12 |
| - |
13 |
| -Covers the basics of using iminuit. |
14 |
| - |
15 |
| -`iminuit and automatic differentiation with JAX <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/automatic_differentiation.ipynb>`_ |
16 |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
17 |
| - |
18 |
| -How to compute function gradients for iminuit with jax_ and accelerate Python code with JAX's JIT compiler. Spoiler: a **32x** speed up over plain numpy is achieved. Also discusses how to do a least-squares fit with data that has uncertainties in *x* and *y*. |
19 |
| - |
20 |
| -`How to accelerate and parallelize cost functions with Numba <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/jit_compilation_andparallelization_with_numba.ipynb>`_ |
21 |
| ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
22 |
| - |
23 |
| -Shows how cost functions can be accelerated by Just-In-Time compilation with numba, and how important it is to optimize the most time-consuming hot spot. |
24 |
| - |
25 |
| -`iminuit and an external minimizer <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/iminuit_and_external_minimizer.ipynb>`_ |
26 |
| --------------------------------------------------------------------------------------------------------------------------------------------------------------- |
27 |
| - |
28 |
| -iminuit can run the HESSE algorithm on any point of the cost function. This means one can effectively combine iminuit with other minimizers: let the other minimizer find the minimum and only run iminuit to compute the parameter uncertainties. This does not work with MINOS, which requires that MIGRAD is run first. |
29 |
| - |
30 |
| -`How to write a generic least-squares cost function <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/generic_least_squares_function.ipynb>`_ |
31 |
| -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
32 |
| - |
33 |
| -Explains how iminuit reads function signatures and how the tooling can be used in a generic least-squares cost function that forwards the signature of the fitted model to iminuit. |
34 |
| - |
35 |
| -`Uncertainty computation in iminuit <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/hesse_and_minos.ipynb>`_ |
36 |
| ------------------------------------------------------------------------------------------------------------------------------------------------- |
37 |
| - |
38 |
| -This is less of a tutorial and more of a write-up on how MINUIT (and thus iminuit) compute uncertainties from likelihood functions. |
39 |
| - |
40 |
| -Outdated Cython tutorials |
41 |
| -------------------------- |
42 |
| - |
43 |
| -The following two tutorials are outdated. Users who want to speed up their fits should try the just-in-time compilers provided by numba_ or jax_ in CPython or use iminuit in PyPy to accelerate the computation. This is much simpler than using Cython and may achieve even better performance. |
44 |
| - |
45 |
| -- `Advanced tutorial <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/advanced_tutorial.ipynb>`_. |
46 |
| - Shows how to speed up the computation of the cost function with Cython. |
47 |
| - |
48 |
| -- `Hard Core Cython tutorial <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/hard_core_tutorial.ipynb>`_. |
49 |
| - Goes into more detail on how to use Cython. |
| 10 | +It is recommended to start with the basic tutorial. All other tutorials are optional, for those who want to know more about specific aspects. |
0 commit comments