Skip to content

Commit 96325a8

Browse files
committed
update tutorial page
1 parent b82ef78 commit 96325a8

File tree

2 files changed

+3
-43
lines changed

2 files changed

+3
-43
lines changed

doc/README.md

+1-2
Original file line numberDiff line numberDiff line change
@@ -9,11 +9,10 @@ How to make a release
99
- create a branch on the master, called release_<version>, make release edits there
1010
- increase version number in iminuit/version.py
1111
- update doc/changelog.rst
12-
- check that new tutorials are listed in the tutorials section of the docs
1312
- run `make integration` to do integration tests (if these fail, add tests to iminuit!)
1413
- run `.ci/download_azure_artifacts.py` to download all wheels from the latest pipeline
1514
- run `python -m twine upload dist/*` if everything looks ok
1615
(missing files can be uploaded later, but existing files cannot be overridden!)
17-
- merge release branch to master (do not squash!)
16+
- merge release branch to master
1817
- create release on Github
1918
- conda-forge should pick this up automatically and generate conda packages

doc/tutorials.rst

+2-41
Original file line numberDiff line numberDiff line change
@@ -5,45 +5,6 @@
55
Tutorials
66
=========
77

8-
All the tutorials are in tutorial directory. You can view them online, too.
8+
All the tutorials are in tutorial directory of the iminuit repository and `can be viewed online <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/>`_.
99

10-
`Basic tutorial <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/basic_tutorial.ipynb>`_
11-
---------------------------------------------------------------------------------------------------------------------------------
12-
13-
Covers the basics of using iminuit.
14-
15-
`iminuit and automatic differentiation with JAX <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/automatic_differentiation.ipynb>`_
16-
----------------------------------------------------------------------------------------------------------------------------------------------------------------------
17-
18-
How to compute function gradients for iminuit with jax_ and accelerate Python code with JAX's JIT compiler. Spoiler: a **32x** speed up over plain numpy is achieved. Also discusses how to do a least-squares fit with data that has uncertainties in *x* and *y*.
19-
20-
`How to accelerate and parallelize cost functions with Numba <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/jit_compilation_andparallelization_with_numba.ipynb>`_
21-
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
22-
23-
Shows how cost functions can be accelerated by Just-In-Time compilation with numba, and how important it is to optimize the most time-consuming hot spot.
24-
25-
`iminuit and an external minimizer <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/iminuit_and_external_minimizer.ipynb>`_
26-
--------------------------------------------------------------------------------------------------------------------------------------------------------------
27-
28-
iminuit can run the HESSE algorithm on any point of the cost function. This means one can effectively combine iminuit with other minimizers: let the other minimizer find the minimum and only run iminuit to compute the parameter uncertainties. This does not work with MINOS, which requires that MIGRAD is run first.
29-
30-
`How to write a generic least-squares cost function <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/generic_least_squares_function.ipynb>`_
31-
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
32-
33-
Explains how iminuit reads function signatures and how the tooling can be used in a generic least-squares cost function that forwards the signature of the fitted model to iminuit.
34-
35-
`Uncertainty computation in iminuit <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/hesse_and_minos.ipynb>`_
36-
------------------------------------------------------------------------------------------------------------------------------------------------
37-
38-
This is less of a tutorial and more of a write-up on how MINUIT (and thus iminuit) compute uncertainties from likelihood functions.
39-
40-
Outdated Cython tutorials
41-
-------------------------
42-
43-
The following two tutorials are outdated. Users who want to speed up their fits should try the just-in-time compilers provided by numba_ or jax_ in CPython or use iminuit in PyPy to accelerate the computation. This is much simpler than using Cython and may achieve even better performance.
44-
45-
- `Advanced tutorial <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/advanced_tutorial.ipynb>`_.
46-
Shows how to speed up the computation of the cost function with Cython.
47-
48-
- `Hard Core Cython tutorial <http://nbviewer.ipython.org/urls/raw.github.com/scikit-hep/iminuit/master/tutorial/hard_core_tutorial.ipynb>`_.
49-
Goes into more detail on how to use Cython.
10+
It is recommended to start with the basic tutorial. All other tutorials are optional, for those who want to know more about specific aspects.

0 commit comments

Comments
 (0)