-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
272 lines (220 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import openai
import os
import time
import logging
import argparse
import streamlit as st
from dotenv import load_dotenv
load_dotenv()
# Set the OpenAI API keys
api_key = os.getenv('OPENAI_API_KEY')
is_debug = os.getenv('DEBUG')
# Set up logging
logging.basicConfig(level=logging.INFO)
# Define a function to open a file and return its contents as a string
def open_file(filepath):
try:
with open(filepath, 'r', encoding='utf-8') as infile:
return infile.read()
except IOError as e:
logging.error(f'Error opening file {filepath}: {e}')
raise e
# Define a function to save content to a file
def save_file(filepath, content, mode='w'):
try:
with open(filepath, mode, encoding='utf-8') as outfile:
outfile.write(content)
except IOError as e:
logging.error(f'Error writing to file {filepath}: {e}')
def save_debug(content):
try:
if is_debug==True:
save_file('debug.txt', content, 'a')
except IOError as e:
logging.error(f'Error writing to file {filepath}: {e}')
page_title = '# OpenAI Tree Thought Solver 🎈'
st.set_page_config(page_title=page_title, page_icon=None, layout="wide", initial_sidebar_state="auto", menu_items=None)
st.markdown(page_title)
col1, col2 = st.columns([1, 4])
col1.subheader("Auto")
col2.subheader("Result")
bar = col2.progress(0)
class ScriptRunner:
def __init__(self, loop_count):
self.current_progress = 0
self.loop_count = loop_count
self.conversation = []
self.problem = ""
self.evidea2 = ""
def update_progress(self, value):
self.current_progress = value
bar.progress(value)
def get_solution(self):
if self.conversation:
assistant_messages = ""
for msg in self.conversation:
if msg['role'] == 'assistant':
assistant_messages += msg['content'] + "\n"
return assistant_messages.strip()
return 'Solution not yet available.'
def get_chain_results(self):
chain_results = {}
for i in range(1, 8):
if os.path.exists(f'chain{i}.md'):
chain_results[f'chain{i}'] = open_file(f'chain{i}.md')
return chain_results
def get_chat_response (self):
return self.chat_response
def get_conversation_history (self):
return "\n".join([f"{message['role'].capitalize()}: {message['content']}" for message in self.conversation])
def chatgpt(self, api_key, conversation, chatbot, user_input, temperature=0.7, frequency_penalty=0.2, presence_penalty=0, max_retry=5):
# Set the API key
openai.api_key = api_key
# Update conversation by appending the user's input
conversation.append({"role": "user", "content": user_input})
# Turn the prompt into a message history
messages_input = conversation.copy()
prompt = [{"role": "system", "content": chatbot}]
messages_input.insert(0, prompt[0])
# Set initial retry count
retry = 0
while True:
try:
save_debug(f'retry: {retry}\n')
save_debug(f'messages_input: {messages_input}\n')
# Make an API call to the Chat Completion endpoint with the updated messages
completion = openai.ChatCompletion.create(
model="gpt-4",
temperature=temperature,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
max_tokens=1500,
messages=messages_input
)
# Extract the assistant's message and add it to the conversation
message = completion['choices'][0]['message']['content']
conversation.append({"role": "assistant", "content": message})
save_debug(f'message: {message}\n')
save_debug('----\n')
return message
except openai.error.RateLimitError as e:
if e.error['message'] == 'Rate limit exceeded' and retry < max_retry:
retry_time = e.retry_after if hasattr(e, 'retry_after') else 3
print(f'Rate limit exceeded. Sleeping for {retry_time} seconds...')
time.sleep(retry_time)
retry += 1
else:
raise e
except openai.error.ServiceUnavailableError as e:
retry_time = 10 # Adjust the retry time as needed
print(f'Service is unavailable. Retrying in {retry_time} seconds...')
time.sleep(retry_time)
retry += 1
except openai.error.APIError as e:
retry_time = e.retry_after if hasattr(e, 'retry_after') else 10
print(f'API error occurred. Retrying in {retry_time} seconds...')
time.sleep(retry_time)
retry += 1
except OSError as e:
retry_time = 5 # Adjust the retry time as needed
print(f'Connection error occurred: {e}. Retrying in {retry_time} seconds...')
time.sleep(retry_time)
retry += 1
def chain_process(self, prompt_file, save_file_name, replacements, api_key, conversation, chatbot):
prompt = open_file(prompt_file)
for placeholder, value in replacements.items():
prompt = prompt.replace(placeholder, value)
col1.markdown(f'- {prompt_file}')
result = self.chatgpt(api_key, conversation, chatbot, prompt)
save_file(save_file_name, result)
with col2.expander(save_file_name):
st.markdown(f'Prompt: {prompt_file}')
st.markdown(f'File: {save_file_name}')
st.markdown(result)
return result
def run_loop(self):
for i in range(self.loop_count):
# Create a new conversation list for each iteration
conversation_iteration = []
# Summary Chain 3
replacements = {'<<WINNINGIDEA>>': self.evidea2}
win2 = self.chain_process('prompts/discriminate.md', f'results/loop_{i}_discriminated.md', replacements, api_key, conversation_iteration, "Assistant")
self.update_progress(20 + 20 * i)
# Summary Chain 4
replacements = {'<<PROBLEM>>': self.problem, '<<WINNING2>>': win2}
loopidea2 = self.chain_process('prompts/brainstorm.md', f'results/loop_{i}_brained.md', replacements, api_key, conversation_iteration, "Assistant")
self.update_progress(40 + 20 * i)
# Summary Chain 5
replacements = {'<<WLOOP>>': loopidea2}
loopidea4 = self.chain_process('prompts/evaluate.md', f'results/loop_{i}_evaluated.md', replacements, api_key, conversation_iteration, "Assistant")
self.update_progress(60 + 20 * i)
def run_script(self):
self.problem = open_file('problems.md')
col2.markdown("Problems")
col2.markdown(self.problem)
conversation = []
# Summary Chain 1
replacements = {'<<PROBLEM>>': self.problem}
idea2 = self.chain_process('prompts/brainstorm-initial.md', 'results/brainstormed.md', replacements, api_key, conversation, "Assistant")
self.update_progress(5)
# Summary Chain 2
replacements = {'<<3IDEAS>>': idea2}
self.evidea2 = self.chain_process('prompts/evaluate-initial.md', 'results/evaluated.md', replacements, api_key, conversation, "Assistant")
self.update_progress(10)
# Summary Chain 3
replacements = {'<<WINNINGIDEA>>': self.evidea2}
win2 = self.chain_process('prompts/discriminate.md', 'results/discriminated.md', replacements, api_key, conversation, "Assistant")
self.update_progress(20)
# Summary Chain 4
replacements = {'<<PROBLEM>>': self.problem, '<<WINNING2>>': win2}
loopidea2 = self.chain_process('prompts/brainstorm.md', 'results/brainstormed-2.md', replacements, api_key, conversation, "Assistant")
self.update_progress(30)
# Summary Chain 5
replacements = {'<<WLOOP>>': loopidea2}
loopidea4 = self.chain_process('prompts/evaluate.md', 'results/evaluated-2.md', replacements, api_key, conversation, "Assistant")
self.update_progress(60)
self.run_loop()
# Summary Chain 6
winner = open_file(f'results/loop_{self.loop_count - 1}_evaluated.md')
replacements = {'<<WINNER>>': winner}
winner3 = self.chain_process('prompts/deepen-win.md', 'results/win-deepened.md', replacements, api_key, conversation, "Assistant")
self.update_progress(80)
# Summary Chain 7
replacements = {'<<WINNER2>>': winner3}
winner5 = self.chain_process('prompts/justify-win.md', 'results/win-justified.md', replacements, api_key, conversation, "Assistant")
self.update_progress(95)
# Create a solution.md
timestr = time.strftime("%Y-%m-%d_%H-%M-%S")
solution_file_name = f'solution_{timestr}.md'
save_file(solution_file_name, '# SOLUTIONS\n\n', 'w')
save_file(solution_file_name, '## Stated problems\n\n', 'a')
save_file(solution_file_name, self.problem, 'a')
save_file(solution_file_name, '\n\n', 'a')
save_file(solution_file_name, '## Initial brainstorm\n\n', 'a')
save_file(solution_file_name, self.evidea2, 'a')
save_file(solution_file_name, '\n\n', 'a')
save_file(solution_file_name, '## Second brainstorm\n\n', 'a')
save_file(solution_file_name, loopidea2, 'a')
save_file(solution_file_name, '\n\n', 'a')
save_file(solution_file_name, f'## Solution\n', 'a')
save_file(solution_file_name, f'After {self.loop_count} iterations, we deepened the thoughts on the solution.\n\n', 'a')
save_file(solution_file_name, winner3, 'a')
save_file(solution_file_name, '\n\n', 'a')
save_file(solution_file_name, f'## Final thoughts on the solution\n\n', 'a')
save_file(solution_file_name, winner5, 'a')
self.update_progress(100)
# Print out the results of each chain
for chain, result in self.get_chain_results().items():
logging.info(f'{chain}: {result}')
with st.sidebar:
st.divider()
st.markdown(chain)
st.divider()
st.markdown(result)
st.divider()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run the script with a specific number of loops.')
parser.add_argument('--loops', type=int, default=3, help='The number of loops to run.')
args = parser.parse_args()
runner = ScriptRunner(loop_count=args.loops)
runner.run_script()