unset CC CXX CFLAGS CXXFLAGS LDFLAGS CUDA_HOME
mamba env create -f environment.yaml
conda activate af3
CMAKE_BUILD_PARALLEL_LEVEL="$(nproc)" pip install -v .
build_data
$ af3 --helpfull
USAGE: af3 [flags]
flags:
--buckets: Strictly increasing order of token sizes for which to cache
compilations. For any input with more tokens than the largest bucket size, a
new bucket is created for exactly that number of tokens.
(default: '256,512,768,1024,1280,1536,2048,2560,3072,3584,4096,4608,5120')
(a comma separated list)
--db_dir: Path to the directory containing the databases.
(default: '/applic/AlphaFold3/public_databases')
--flash_attention_implementation: <triton|cudnn|xla>: Flash attention
implementation to use. 'triton' and 'cudnn' uses a Triton and cuDNN flash
attention implementation, respectively. The Triton kernel is fastest and has
been tested more thoroughly. The Triton and cuDNN kernels require Ampere
GPUs or later. 'xla' uses an XLA attention implementation (no flash
attention) and is portable across GPU devices.
(default: 'triton')
--hmmalign_binary_path: Path to the Hmmalign binary.
(default: '/data/galaxy4/user/jnooree/tmp/env/bin/hmmalign')
--hmmbuild_binary_path: Path to the Hmmbuild binary.
(default: '/data/galaxy4/user/jnooree/tmp/env/bin/hmmbuild')
--hmmsearch_binary_path: Path to the Hmmsearch binary.
(default: '/data/galaxy4/user/jnooree/tmp/env/bin/hmmsearch')
--input_dir: Path to the directory containing input JSON files.
--jackhmmer_binary_path: Path to the Jackhmmer binary.
(default: '/data/galaxy4/user/jnooree/tmp/env/bin/jackhmmer')
--jackhmmer_n_cpu: Number of CPUs to use for Jackhmmer. Default to
min(cpu_count, 8). Going beyond 8 CPUs provides very little additional
speedup.
(default: '8')
(an integer)
--jax_compilation_cache_dir: Path to a directory for the JAX compilation
cache.
--json_path: Path to the input JSON file.
--mgnify_database_path: Mgnify database path, used for protein MSA search.
(default: '${DB_DIR}/mgy_clusters_2022_05.fa')
--model_dir: Path to the model to use for inference.
(default: '/applic/AlphaFold3/models')
--nhmmer_binary_path: Path to the Nhmmer binary.
(default: '/data/galaxy4/user/jnooree/tmp/env/bin/nhmmer')
--nhmmer_n_cpu: Number of CPUs to use for Nhmmer. Default to min(cpu_count,
8). Going beyond 8 CPUs provides very little additional speedup.
(default: '8')
(an integer)
--ntrna_database_path: NT-RNA database path, used for RNA MSA search.
(default:
'${DB_DIR}/nt_rna_2023_02_23_clust_seq_id_90_cov_80_rep_seq.fasta')
--output_dir: Path to a directory where the results will be saved.
--pdb_database_path: PDB database directory with mmCIF files path, used for
template search.
(default: '${DB_DIR}/pdb_mmcif_files')
--rfam_database_path: Rfam database path, used for RNA MSA search.
(default: '${DB_DIR}/rfam_14_9_clust_seq_id_90_cov_80_rep_seq.fasta')
--rna_central_database_path: RNAcentral database path, used for RNA MSA
search.
(default: '${DB_DIR}/rnacentral_active_seq_id_90_cov_80_linclust.fasta')
--[no]run_data_pipeline: Whether to run the data pipeline on the fold inputs.
(default: 'true')
--[no]run_inference: Whether to run inference on the fold inputs.
(default: 'true')
--seqres_database_path: PDB sequence database path, used for template search.
(default: '${DB_DIR}/pdb_seqres.fasta')
--small_bfd_database_path: Small BFD database path, used for protein MSA
search.
(default: '${DB_DIR}/bfd-first_non_consensus_sequences.fasta')
--uniprot_cluster_annot_database_path: UniProt database path, used for protein
paired MSA search.
(default: '${DB_DIR}/uniprot_all.fa')
--uniref90_database_path: UniRef90 database path, used for MSA search. The MSA
obtained by searching it is used to construct the profile for template
search.
(default: '${DB_DIR}/uniref90.fa')