forked from llvm/clangir
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCIRGenValue.h
542 lines (456 loc) · 18.7 KB
/
CIRGenValue.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
//===-- CIRGenValue.h - CIRGen wrappers for mlir::Value ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These classes implement wrappers around mlir::Value in order to fully
// represent the range of values for C L- and R- values.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_CIR_CIRGENVALUE_H
#define LLVM_CLANG_LIB_CIR_CIRGENVALUE_H
#include "Address.h"
#include "CIRGenRecordLayout.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Type.h"
#include "clang/CIR/Dialect/IR/CIRTypes.h"
#include "llvm/ADT/PointerIntPair.h"
#include "mlir/IR/Value.h"
namespace cir {
/// This trivial value class is used to represent the result of an
/// expression that is evaluated. It can be one of three things: either a
/// simple MLIR SSA value, a pair of SSA values for complex numbers, or the
/// address of an aggregate value in memory.
class RValue {
enum Flavor { Scalar, Complex, Aggregate };
// The shift to make to an aggregate's alignment to make it look
// like a pointer.
enum { AggAlignShift = 4 };
// Stores first value and flavor.
llvm::PointerIntPair<mlir::Value, 2, Flavor> V1;
// Stores second value and volatility.
llvm::PointerIntPair<llvm::PointerUnion<mlir::Value, int *>, 1, bool> V2;
// Stores element type for aggregate values.
mlir::Type ElementType;
public:
bool isScalar() const { return V1.getInt() == Scalar; }
bool isComplex() const { return V1.getInt() == Complex; }
bool isAggregate() const { return V1.getInt() == Aggregate; }
bool isIgnored() const { return isScalar() && !getScalarVal(); }
bool isVolatileQualified() const { return V2.getInt(); }
/// Return the mlir::Value of this scalar value.
mlir::Value getScalarVal() const {
assert(isScalar() && "Not a scalar!");
return V1.getPointer();
}
/// Return the real/imag components of this complex value.
std::pair<mlir::Value, mlir::Value> getComplexVal() const {
assert(0 && "not implemented");
return {};
}
/// Return the mlir::Value of the address of the aggregate.
Address getAggregateAddress() const {
assert(isAggregate() && "Not an aggregate!");
auto align = reinterpret_cast<uintptr_t>(V2.getPointer().get<int *>()) >>
AggAlignShift;
return Address(V1.getPointer(), ElementType,
clang::CharUnits::fromQuantity(align));
}
mlir::Value getAggregatePointer() const {
assert(isAggregate() && "Not an aggregate!");
return V1.getPointer();
}
static RValue getIgnored() {
// FIXME: should we make this a more explicit state?
return get(nullptr);
}
static RValue get(mlir::Value V) {
RValue ER;
ER.V1.setPointer(V);
ER.V1.setInt(Scalar);
ER.V2.setInt(false);
return ER;
}
static RValue getComplex(mlir::Value V1, mlir::Value V2) {
assert(0 && "not implemented");
return RValue{};
}
static RValue getComplex(const std::pair<mlir::Value, mlir::Value> &C) {
assert(0 && "not implemented");
return RValue{};
}
// FIXME: Aggregate rvalues need to retain information about whether they are
// volatile or not. Remove default to find all places that probably get this
// wrong.
static RValue getAggregate(Address addr, bool isVolatile = false) {
RValue ER;
ER.V1.setPointer(addr.getPointer());
ER.V1.setInt(Aggregate);
ER.ElementType = addr.getElementType();
auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
ER.V2.setPointer(reinterpret_cast<int *>(align << AggAlignShift));
ER.V2.setInt(isVolatile);
return ER;
}
};
/// The source of the alignment of an l-value; an expression of
/// confidence in the alignment actually matching the estimate.
enum class AlignmentSource {
/// The l-value was an access to a declared entity or something
/// equivalently strong, like the address of an array allocated by a
/// language runtime.
Decl,
/// The l-value was considered opaque, so the alignment was
/// determined from a type, but that type was an explicitly-aligned
/// typedef.
AttributedType,
/// The l-value was considered opaque, so the alignment was
/// determined from a type.
Type
};
/// Given that the base address has the given alignment source, what's
/// our confidence in the alignment of the field?
static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
// For now, we don't distinguish fields of opaque pointers from
// top-level declarations, but maybe we should.
return AlignmentSource::Decl;
}
class LValueBaseInfo {
AlignmentSource AlignSource;
public:
explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
: AlignSource(Source) {}
AlignmentSource getAlignmentSource() const { return AlignSource; }
void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }
void mergeForCast(const LValueBaseInfo &Info) {
setAlignmentSource(Info.getAlignmentSource());
}
};
class LValue {
enum {
Simple, // This is a normal l-value, use getAddress().
VectorElt, // This is a vector element l-value (V[i]), use getVector*
BitField, // This is a bitfield l-value, use getBitfield*.
ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
GlobalReg, // This is a register l-value, use getGlobalReg()
MatrixElt // This is a matrix element, use getVector*
} LVType;
clang::QualType Type;
clang::Qualifiers Quals;
// LValue is non-gc'able for any reason, including being a parameter or local
// variable.
bool NonGC : 1;
// This flag shows if a nontemporal load/stores should be used when accessing
// this lvalue.
bool Nontemporal : 1;
private:
void Initialize(clang::QualType Type, clang::Qualifiers Quals,
clang::CharUnits Alignment, LValueBaseInfo BaseInfo) {
assert((!Alignment.isZero() || Type->isIncompleteType()) &&
"initializing l-value with zero alignment!");
if (isGlobalReg())
assert(ElementType == nullptr && "Global reg does not store elem type");
this->Type = Type;
this->Quals = Quals;
// This flag shows if a nontemporal load/stores should be used when
// accessing this lvalue.
const unsigned MaxAlign = 1U << 31;
this->Alignment = Alignment.getQuantity() <= MaxAlign
? Alignment.getQuantity()
: MaxAlign;
assert(this->Alignment == Alignment.getQuantity() &&
"Alignment exceeds allowed max!");
this->BaseInfo = BaseInfo;
// TODO: ObjC flags
// Initialize Objective-C flags.
this->NonGC = false;
this->Nontemporal = false;
}
// The alignment to use when accessing this lvalue. (For vector elements,
// this is the alignment of the whole vector)
unsigned Alignment;
mlir::Value V;
mlir::Type ElementType;
mlir::Value VectorIdx; // Index for vector subscript
mlir::Attribute VectorElts; // ExtVector element subset: V.xyx
LValueBaseInfo BaseInfo;
const CIRGenBitFieldInfo *BitFieldInfo{0};
public:
bool isSimple() const { return LVType == Simple; }
bool isVectorElt() const { return LVType == VectorElt; }
bool isBitField() const { return LVType == BitField; }
bool isExtVectorElt() const { return LVType == ExtVectorElt; }
bool isGlobalReg() const { return LVType == GlobalReg; }
bool isMatrixElt() const { return LVType == MatrixElt; }
bool isVolatileQualified() const { return Quals.hasVolatile(); }
unsigned getVRQualifiers() const {
return Quals.getCVRQualifiers() & ~clang::Qualifiers::Const;
}
bool isNonGC() const { return NonGC; }
void setNonGC(bool Value) { NonGC = Value; }
bool isNontemporal() const { return Nontemporal; }
bool isObjCWeak() const {
return Quals.getObjCGCAttr() == clang::Qualifiers::Weak;
}
bool isObjCStrong() const {
return Quals.getObjCGCAttr() == clang::Qualifiers::Strong;
}
bool isVolatile() const { return Quals.hasVolatile(); }
clang::QualType getType() const { return Type; }
mlir::Value getPointer() const { return V; }
clang::CharUnits getAlignment() const {
return clang::CharUnits::fromQuantity(Alignment);
}
void setAlignment(clang::CharUnits A) { Alignment = A.getQuantity(); }
Address getAddress() const {
return Address(getPointer(), ElementType, getAlignment());
}
void setAddress(Address address) {
assert(isSimple());
V = address.getPointer();
ElementType = address.getElementType();
Alignment = address.getAlignment().getQuantity();
// TODO(cir): IsKnownNonNull = address.isKnownNonNull();
}
LValueBaseInfo getBaseInfo() const { return BaseInfo; }
void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }
static LValue makeAddr(Address address, clang::QualType T,
AlignmentSource Source = AlignmentSource::Type) {
LValue R;
R.LVType = Simple;
R.V = address.getPointer();
R.ElementType = address.getElementType();
R.Initialize(T, T.getQualifiers(), address.getAlignment(),
LValueBaseInfo(Source));
return R;
}
// FIXME: only have one of these static methods.
static LValue makeAddr(Address address, clang::QualType T,
LValueBaseInfo LBI) {
LValue R;
R.LVType = Simple;
R.V = address.getPointer();
R.ElementType = address.getElementType();
R.Initialize(T, T.getQualifiers(), address.getAlignment(), LBI);
return R;
}
static LValue makeAddr(Address address, clang::QualType type,
clang::ASTContext &Context, LValueBaseInfo BaseInfo) {
clang::Qualifiers qs = type.getQualifiers();
qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
LValue R;
R.LVType = Simple;
assert(address.getPointer().getType().cast<mlir::cir::PointerType>());
R.V = address.getPointer();
R.ElementType = address.getElementType();
R.Initialize(type, qs, address.getAlignment(),
BaseInfo); // TODO: TBAAInfo);
return R;
}
const clang::Qualifiers &getQuals() const { return Quals; }
clang::Qualifiers &getQuals() { return Quals; }
// vector element lvalue
Address getVectorAddress() const {
return Address(getVectorPointer(), ElementType, getAlignment());
}
mlir::Value getVectorPointer() const {
assert(isVectorElt());
return V;
}
mlir::Value getVectorIdx() const {
assert(isVectorElt());
return VectorIdx;
}
// extended vector elements.
Address getExtVectorAddress() const {
assert(isExtVectorElt());
return Address(getExtVectorPointer(), ElementType, getAlignment());
}
mlir::Value getExtVectorPointer() const {
assert(isExtVectorElt());
return V;
}
mlir::ArrayAttr getExtVectorElts() const {
assert(isExtVectorElt());
return mlir::cast<mlir::ArrayAttr>(VectorElts);
}
static LValue MakeVectorElt(Address vecAddress, mlir::Value Index,
clang::QualType type, LValueBaseInfo BaseInfo) {
LValue R;
R.LVType = VectorElt;
R.V = vecAddress.getPointer();
R.ElementType = vecAddress.getElementType();
R.VectorIdx = Index;
R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
BaseInfo);
return R;
}
static LValue MakeExtVectorElt(Address vecAddress, mlir::ArrayAttr elts,
clang::QualType type,
LValueBaseInfo baseInfo) {
LValue R;
R.LVType = ExtVectorElt;
R.V = vecAddress.getPointer();
R.ElementType = vecAddress.getElementType();
R.VectorElts = elts;
R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
baseInfo);
return R;
}
// bitfield lvalue
Address getBitFieldAddress() const {
return Address(getBitFieldPointer(), ElementType, getAlignment());
}
mlir::Value getBitFieldPointer() const {
assert(isBitField());
return V;
}
const CIRGenBitFieldInfo &getBitFieldInfo() const {
assert(isBitField());
return *BitFieldInfo;
}
/// Create a new object to represent a bit-field access.
///
/// \param Addr - The base address of the bit-field sequence this
/// bit-field refers to.
/// \param Info - The information describing how to perform the bit-field
/// access.
static LValue MakeBitfield(Address Addr, const CIRGenBitFieldInfo &Info,
clang::QualType type, LValueBaseInfo BaseInfo) {
LValue R;
R.LVType = BitField;
R.V = Addr.getPointer();
R.ElementType = Addr.getElementType();
R.BitFieldInfo = &Info;
R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo);
return R;
}
};
/// An aggregate value slot.
class AggValueSlot {
/// The address.
Address Addr;
// Qualifiers
clang::Qualifiers Quals;
/// This is set to true if some external code is responsible for setting up a
/// destructor for the slot. Otherwise the code which constructs it should
/// push the appropriate cleanup.
bool DestructedFlag : 1;
/// This is set to true if writing to the memory in the slot might require
/// calling an appropriate Objective-C GC barrier. The exact interaction here
/// is unnecessarily mysterious.
bool ObjCGCFlag : 1;
/// This is set to true if the memory in the slot is known to be zero before
/// the assignment into it. This means that zero fields don't need to be set.
bool ZeroedFlag : 1;
/// This is set to true if the slot might be aliased and it's not undefined
/// behavior to access it through such an alias. Note that it's always
/// undefined behavior to access a C++ object that's under construction
/// through an alias derived from outside the construction process.
///
/// This flag controls whether calls that produce the aggregate
/// value may be evaluated directly into the slot, or whether they
/// must be evaluated into an unaliased temporary and then memcpy'ed
/// over. Since it's invalid in general to memcpy a non-POD C++
/// object, it's important that this flag never be set when
/// evaluating an expression which constructs such an object.
bool AliasedFlag : 1;
/// This is set to true if the tail padding of this slot might overlap
/// another object that may have already been initialized (and whose
/// value must be preserved by this initialization). If so, we may only
/// store up to the dsize of the type. Otherwise we can widen stores to
/// the size of the type.
bool OverlapFlag : 1;
/// If is set to true, sanitizer checks are already generated for this address
/// or not required. For instance, if this address represents an object
/// created in 'new' expression, sanitizer checks for memory is made as a part
/// of 'operator new' emission and object constructor should not generate
/// them.
bool SanitizerCheckedFlag : 1;
AggValueSlot(Address Addr, clang::Qualifiers Quals, bool DestructedFlag,
bool ObjCGCFlag, bool ZeroedFlag, bool AliasedFlag,
bool OverlapFlag, bool SanitizerCheckedFlag)
: Addr(Addr), Quals(Quals), DestructedFlag(DestructedFlag),
ObjCGCFlag(ObjCGCFlag), ZeroedFlag(ZeroedFlag),
AliasedFlag(AliasedFlag), OverlapFlag(OverlapFlag),
SanitizerCheckedFlag(SanitizerCheckedFlag) {}
public:
enum IsAliased_t { IsNotAliased, IsAliased };
enum IsDestructed_t { IsNotDestructed, IsDestructed };
enum IsZeroed_t { IsNotZeroed, IsZeroed };
enum Overlap_t { DoesNotOverlap, MayOverlap };
enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };
/// ignored - Returns an aggregate value slot indicating that the aggregate
/// value is being ignored.
static AggValueSlot ignored() {
return forAddr(Address::invalid(), clang::Qualifiers(), IsNotDestructed,
DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
}
/// forAddr - Make a slot for an aggregate value.
///
/// \param quals - The qualifiers that dictate how the slot should be
/// initialized. Only 'volatile' and the Objective-C lifetime qualifiers
/// matter.
///
/// \param isDestructed - true if something else is responsible for calling
/// destructors on this object
/// \param needsGC - true fi the slot is potentially located somewhere that
/// ObjC GC calls should be emitted for
static AggValueSlot
forAddr(Address addr, clang::Qualifiers quals, IsDestructed_t isDestructed,
NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
return AggValueSlot(addr, quals, isDestructed, needsGC, isZeroed, isAliased,
mayOverlap, isChecked);
}
static AggValueSlot
forLValue(const LValue &LV, IsDestructed_t isDestructed,
NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
return forAddr(LV.getAddress(), LV.getQuals(), isDestructed, needsGC,
isAliased, mayOverlap, isZeroed, isChecked);
}
IsDestructed_t isExternallyDestructed() const {
return IsDestructed_t(DestructedFlag);
}
void setExternallyDestructed(bool destructed = true) {
DestructedFlag = destructed;
}
clang::Qualifiers getQualifiers() const { return Quals; }
bool isVolatile() const { return Quals.hasVolatile(); }
Address getAddress() const { return Addr; }
bool isIgnored() const { return !Addr.isValid(); }
mlir::Value getPointer() const { return Addr.getPointer(); }
Overlap_t mayOverlap() const { return Overlap_t(OverlapFlag); }
bool isSanitizerChecked() const { return SanitizerCheckedFlag; }
IsZeroed_t isZeroed() const { return IsZeroed_t(ZeroedFlag); }
void setZeroed(bool V = true) { ZeroedFlag = V; }
NeedsGCBarriers_t requiresGCollection() const {
return NeedsGCBarriers_t(ObjCGCFlag);
}
IsAliased_t isPotentiallyAliased() const { return IsAliased_t(AliasedFlag); }
RValue asRValue() const {
if (isIgnored()) {
return RValue::getIgnored();
} else {
return RValue::getAggregate(getAddress(), isVolatile());
}
}
/// Get the preferred size to use when storing a value to this slot. This
/// is the type size unless that might overlap another object, in which
/// case it's the dsize.
clang::CharUnits getPreferredSize(clang::ASTContext &Ctx,
clang::QualType Type) {
return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width
: Ctx.getTypeSizeInChars(Type);
}
};
} // namespace cir
#endif