forked from llvm/clangir
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCIRGenDecl.cpp
1225 lines (1054 loc) · 45.9 KB
/
CIRGenDecl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- CIRGenDecl.cpp - Emit CIR Code for declarations ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Decl nodes as CIR code.
//
//===----------------------------------------------------------------------===//
#include "CIRDataLayout.h"
#include "CIRGenBuilder.h"
#include "CIRGenCstEmitter.h"
#include "CIRGenFunction.h"
#include "CIRGenOpenMPRuntime.h"
#include "EHScopeStack.h"
#include "UnimplementedFeatureGuarding.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/SymbolTable.h"
#include "clang/AST/Decl.h"
#include "clang/AST/ExprCXX.h"
#include "clang/CIR/Dialect/IR/CIROpsEnums.h"
#include "clang/CIR/Dialect/IR/CIRTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
using namespace cir;
using namespace clang;
CIRGenFunction::AutoVarEmission
CIRGenFunction::buildAutoVarAlloca(const VarDecl &D,
mlir::OpBuilder::InsertPoint ip) {
QualType Ty = D.getType();
// TODO: (|| Ty.getAddressSpace() == LangAS::opencl_private &&
// getLangOpts().OpenCL))
assert(!UnimplementedFeature::openCL());
assert(Ty.getAddressSpace() == LangAS::Default);
assert(!D.hasAttr<AnnotateAttr>() && "not implemented");
auto loc = getLoc(D.getSourceRange());
bool NRVO =
getContext().getLangOpts().ElideConstructors && D.isNRVOVariable();
AutoVarEmission emission(D);
bool isEscapingByRef = D.isEscapingByref();
emission.IsEscapingByRef = isEscapingByRef;
CharUnits alignment = getContext().getDeclAlign(&D);
// If the type is variably-modified, emit all the VLA sizes for it.
if (Ty->isVariablyModifiedType())
buildVariablyModifiedType(Ty);
assert(!UnimplementedFeature::generateDebugInfo());
assert(!UnimplementedFeature::cxxABI());
Address address = Address::invalid();
Address allocaAddr = Address::invalid();
Address openMPLocalAddr =
getCIRGenModule().getOpenMPRuntime().getAddressOfLocalVariable(*this, &D);
assert(!getLangOpts().OpenMPIsTargetDevice && "NYI");
if (getLangOpts().OpenMP && openMPLocalAddr.isValid()) {
llvm_unreachable("NYI");
} else if (Ty->isConstantSizeType()) {
// If this value is an array or struct with a statically determinable
// constant initializer, there are optimizations we can do.
//
// TODO: We should constant-evaluate the initializer of any variable,
// as long as it is initialized by a constant expression. Currently,
// isConstantInitializer produces wrong answers for structs with
// reference or bitfield members, and a few other cases, and checking
// for POD-ness protects us from some of these.
if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
(D.isConstexpr() ||
((Ty.isPODType(getContext()) ||
getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
D.getInit()->isConstantInitializer(getContext(), false)))) {
// If the variable's a const type, and it's neither an NRVO
// candidate nor a __block variable and has no mutable members,
// emit it as a global instead.
// Exception is if a variable is located in non-constant address space
// in OpenCL.
// TODO: deal with CGM.getCodeGenOpts().MergeAllConstants
// TODO: perhaps we don't need this at all at CIR since this can
// be done as part of lowering down to LLVM.
if ((!getContext().getLangOpts().OpenCL ||
Ty.getAddressSpace() == LangAS::opencl_constant) &&
(!NRVO && !D.isEscapingByref() &&
CGM.isTypeConstant(Ty, /*ExcludeCtor=*/true,
/*ExcludeDtor=*/false))) {
buildStaticVarDecl(D, mlir::cir::GlobalLinkageKind::InternalLinkage);
// Signal this condition to later callbacks.
emission.Addr = Address::invalid();
assert(emission.wasEmittedAsGlobal());
return emission;
}
// Otherwise, tell the initialization code that we're in this case.
emission.IsConstantAggregate = true;
}
// A normal fixed sized variable becomes an alloca in the entry block,
// unless:
// - it's an NRVO variable.
// - we are compiling OpenMP and it's an OpenMP local variable.
if (NRVO) {
// The named return value optimization: allocate this variable in the
// return slot, so that we can elide the copy when returning this
// variable (C++0x [class.copy]p34).
address = ReturnValue;
allocaAddr = ReturnValue;
if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
const auto *RD = RecordTy->getDecl();
const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
RD->isNonTrivialToPrimitiveDestroy()) {
// In LLVM: Create a flag that is used to indicate when the NRVO was
// applied to this variable. Set it to zero to indicate that NRVO was
// not applied. For now, use the same approach for CIRGen until we can
// be sure it's worth doing something more aggressive.
auto falseNVRO = builder.getFalse(loc);
Address NRVOFlag = CreateTempAlloca(
falseNVRO.getType(), CharUnits::One(), loc, "nrvo",
/*ArraySize=*/nullptr, &allocaAddr);
assert(builder.getInsertionBlock());
builder.createStore(loc, falseNVRO, NRVOFlag);
// Record the NRVO flag for this variable.
NRVOFlags[&D] = NRVOFlag.getPointer();
emission.NRVOFlag = NRVOFlag.getPointer();
}
}
} else {
if (isEscapingByRef)
llvm_unreachable("NYI");
mlir::Type allocaTy = getTypes().convertTypeForMem(Ty);
CharUnits allocaAlignment = alignment;
// Create the temp alloca and declare variable using it.
mlir::Value addrVal;
address = CreateTempAlloca(allocaTy, allocaAlignment, loc, D.getName(),
/*ArraySize=*/nullptr, &allocaAddr, ip);
if (failed(declare(address, &D, Ty, getLoc(D.getSourceRange()), alignment,
addrVal))) {
CGM.emitError("Cannot declare variable");
return emission;
}
// TODO: what about emitting lifetime markers for MSVC catch parameters?
// TODO: something like @llvm.lifetime.start/end here? revisit this later.
assert(!UnimplementedFeature::shouldEmitLifetimeMarkers());
}
} else { // not openmp nor constant sized type
bool VarAllocated = false;
if (getLangOpts().OpenMPIsTargetDevice)
llvm_unreachable("NYI");
if (!VarAllocated) {
if (!DidCallStackSave) {
// Save the stack.
auto defaultTy = AllocaInt8PtrTy;
CharUnits Align = CharUnits::fromQuantity(
CGM.getDataLayout().getAlignment(defaultTy, false));
Address Stack = CreateTempAlloca(defaultTy, Align, loc, "saved_stack");
mlir::Value V = builder.createStackSave(loc, defaultTy);
assert(V.getType() == AllocaInt8PtrTy);
builder.createStore(loc, V, Stack);
DidCallStackSave = true;
// Push a cleanup block and restore the stack there.
// FIXME: in general circumstances, this should be an EH cleanup.
pushStackRestore(NormalCleanup, Stack);
}
auto VlaSize = getVLASize(Ty);
mlir::Type mTy = convertTypeForMem(VlaSize.Type);
// Allocate memory for the array.
address = CreateTempAlloca(mTy, alignment, loc, "vla", VlaSize.NumElts,
&allocaAddr, builder.saveInsertionPoint());
}
// If we have debug info enabled, properly describe the VLA dimensions for
// this type by registering the vla size expression for each of the
// dimensions.
assert(!UnimplementedFeature::generateDebugInfo());
}
emission.Addr = address;
setAddrOfLocalVar(&D, emission.Addr);
return emission;
}
/// Determine whether the given initializer is trivial in the sense
/// that it requires no code to be generated.
bool CIRGenFunction::isTrivialInitializer(const Expr *Init) {
if (!Init)
return true;
if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
if (CXXConstructorDecl *Constructor = Construct->getConstructor())
if (Constructor->isTrivial() && Constructor->isDefaultConstructor() &&
!Construct->requiresZeroInitialization())
return true;
return false;
}
static void emitStoresForConstant(CIRGenModule &CGM, const VarDecl &D,
Address addr, bool isVolatile,
CIRGenBuilderTy &builder,
mlir::TypedAttr constant, bool IsAutoInit) {
auto Ty = constant.getType();
cir::CIRDataLayout layout{CGM.getModule()};
uint64_t ConstantSize = layout.getTypeAllocSize(Ty);
if (!ConstantSize)
return;
assert(!UnimplementedFeature::addAutoInitAnnotation());
assert(!UnimplementedFeature::vectorConstants());
assert(!UnimplementedFeature::shouldUseBZeroPlusStoresToInitialize());
assert(!UnimplementedFeature::shouldUseMemSetToInitialize());
assert(!UnimplementedFeature::shouldSplitConstantStore());
assert(!UnimplementedFeature::shouldCreateMemCpyFromGlobal());
// In CIR we want to emit a store for the whole thing, later lowering
// prepare to LLVM should unwrap this into the best policy (see asserts
// above).
//
// FIXME(cir): This is closer to memcpy behavior but less optimal, instead of
// copy from a global, we just create a cir.const out of it.
if (addr.getElementType() != Ty) {
auto ptr = addr.getPointer();
ptr = builder.createBitcast(ptr.getLoc(), ptr, builder.getPointerTo(Ty));
addr = addr.withPointer(ptr, addr.isKnownNonNull());
}
auto loc = CGM.getLoc(D.getSourceRange());
builder.createStore(loc, builder.getConstant(loc, constant), addr);
}
void CIRGenFunction::buildAutoVarInit(const AutoVarEmission &emission) {
assert(emission.Variable && "emission was not valid!");
// If this was emitted as a global constant, we're done.
if (emission.wasEmittedAsGlobal())
return;
const VarDecl &D = *emission.Variable;
QualType type = D.getType();
// If this local has an initializer, emit it now.
const Expr *Init = D.getInit();
// TODO: in LLVM codegen if we are at an unreachable point, the initializer
// isn't emitted unless it contains a label. What we want for CIR?
assert(builder.getInsertionBlock());
// Initialize the variable here if it doesn't have a initializer and it is a
// C struct that is non-trivial to initialize or an array containing such a
// struct.
if (!Init && type.isNonTrivialToPrimitiveDefaultInitialize() ==
QualType::PDIK_Struct) {
assert(0 && "not implemented");
return;
}
const Address Loc = emission.Addr;
// Check whether this is a byref variable that's potentially
// captured and moved by its own initializer. If so, we'll need to
// emit the initializer first, then copy into the variable.
assert(!UnimplementedFeature::capturedByInit() && "NYI");
// Note: constexpr already initializes everything correctly.
LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
(D.isConstexpr()
? LangOptions::TrivialAutoVarInitKind::Uninitialized
: (D.getAttr<UninitializedAttr>()
? LangOptions::TrivialAutoVarInitKind::Uninitialized
: getContext().getLangOpts().getTrivialAutoVarInit()));
auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
if (trivialAutoVarInit ==
LangOptions::TrivialAutoVarInitKind::Uninitialized)
return;
assert(0 && "unimplemented");
};
if (isTrivialInitializer(Init))
return initializeWhatIsTechnicallyUninitialized(Loc);
mlir::Attribute constant;
if (emission.IsConstantAggregate ||
D.mightBeUsableInConstantExpressions(getContext())) {
// FIXME: Differently from LLVM we try not to emit / lower too much
// here for CIR since we are interesting in seeing the ctor in some
// analysis later on. So CIR's implementation of ConstantEmitter will
// frequently return an empty Attribute, to signal we want to codegen
// some trivial ctor calls and whatnots.
constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
if (constant && !constant.isa<mlir::cir::ZeroAttr>() &&
(trivialAutoVarInit !=
LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
llvm_unreachable("NYI");
}
}
// NOTE(cir): In case we have a constant initializer, we can just emit a
// store. But, in CIR, we wish to retain any ctor calls, so if it is a
// CXX temporary object creation, we ensure the ctor call is used deferring
// its removal/optimization to the CIR lowering.
if (!constant || isa<CXXTemporaryObjectExpr>(Init)) {
initializeWhatIsTechnicallyUninitialized(Loc);
LValue lv = LValue::makeAddr(Loc, type, AlignmentSource::Decl);
buildExprAsInit(Init, &D, lv);
// In case lv has uses it means we indeed initialized something
// out of it while trying to build the expression, mark it as such.
auto addr = lv.getAddress().getPointer();
assert(addr && "Should have an address");
auto allocaOp = dyn_cast_or_null<mlir::cir::AllocaOp>(addr.getDefiningOp());
assert(allocaOp && "Address should come straight out of the alloca");
if (!allocaOp.use_empty())
allocaOp.setInitAttr(mlir::UnitAttr::get(builder.getContext()));
return;
}
// FIXME(cir): migrate most of this file to use mlir::TypedAttr directly.
auto typedConstant = constant.dyn_cast<mlir::TypedAttr>();
assert(typedConstant && "expected typed attribute");
if (!emission.IsConstantAggregate) {
// For simple scalar/complex initialization, store the value directly.
LValue lv = makeAddrLValue(Loc, type);
assert(Init && "expected initializer");
auto initLoc = getLoc(Init->getSourceRange());
lv.setNonGC(true);
return buildStoreThroughLValue(
RValue::get(builder.getConstant(initLoc, typedConstant)), lv);
}
emitStoresForConstant(CGM, D, Loc, type.isVolatileQualified(), builder,
typedConstant, /*IsAutoInit=*/false);
}
void CIRGenFunction::buildAutoVarCleanups(const AutoVarEmission &emission) {
assert(emission.Variable && "emission was not valid!");
// If this was emitted as a global constant, we're done.
if (emission.wasEmittedAsGlobal())
return;
// TODO: in LLVM codegen if we are at an unreachable point codgen
// is ignored. What we want for CIR?
assert(builder.getInsertionBlock());
const VarDecl &D = *emission.Variable;
// Check the type for a cleanup.
if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
buildAutoVarTypeCleanup(emission, dtorKind);
// In GC mode, honor objc_precise_lifetime.
if (getContext().getLangOpts().getGC() != LangOptions::NonGC &&
D.hasAttr<ObjCPreciseLifetimeAttr>())
assert(0 && "not implemented");
// Handle the cleanup attribute.
if (const CleanupAttr *CA = D.getAttr<CleanupAttr>())
assert(0 && "not implemented");
// TODO: handle block variable
}
/// Emit code and set up symbol table for a variable declaration with auto,
/// register, or no storage class specifier. These turn into simple stack
/// objects, globals depending on target.
void CIRGenFunction::buildAutoVarDecl(const VarDecl &D) {
AutoVarEmission emission = buildAutoVarAlloca(D);
buildAutoVarInit(emission);
buildAutoVarCleanups(emission);
}
void CIRGenFunction::buildVarDecl(const VarDecl &D) {
if (D.hasExternalStorage()) {
// Don't emit it now, allow it to be emitted lazily on its first use.
return;
}
// Some function-scope variable does not have static storage but still
// needs to be emitted like a static variable, e.g. a function-scope
// variable in constant address space in OpenCL.
if (D.getStorageDuration() != SD_Automatic) {
// Static sampler variables translated to function calls.
if (D.getType()->isSamplerT())
return;
auto Linkage = CGM.getCIRLinkageVarDefinition(&D, /*IsConstant=*/false);
// FIXME: We need to force the emission/use of a guard variable for
// some variables even if we can constant-evaluate them because
// we can't guarantee every translation unit will constant-evaluate them.
return buildStaticVarDecl(D, Linkage);
}
if (D.getType().getAddressSpace() == LangAS::opencl_local)
llvm_unreachable("OpenCL and address space are NYI");
assert(D.hasLocalStorage());
CIRGenFunction::VarDeclContext varDeclCtx{*this, &D};
return buildAutoVarDecl(D);
}
static std::string getStaticDeclName(CIRGenModule &CGM, const VarDecl &D) {
if (CGM.getLangOpts().CPlusPlus)
return CGM.getMangledName(&D).str();
// If this isn't C++, we don't need a mangled name, just a pretty one.
assert(!D.isExternallyVisible() && "name shouldn't matter");
std::string ContextName;
const DeclContext *DC = D.getDeclContext();
if (auto *CD = dyn_cast<CapturedDecl>(DC))
DC = cast<DeclContext>(CD->getNonClosureContext());
if (const auto *FD = dyn_cast<FunctionDecl>(DC))
ContextName = std::string(CGM.getMangledName(FD));
else if (const auto *BD = dyn_cast<BlockDecl>(DC))
llvm_unreachable("block decl context for static var is NYI");
else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
llvm_unreachable("ObjC decl context for static var is NYI");
else
llvm_unreachable("Unknown context for static var decl");
ContextName += "." + D.getNameAsString();
return ContextName;
}
// TODO(cir): LLVM uses a Constant base class. Maybe CIR could leverage an
// interface for all constants?
mlir::cir::GlobalOp
CIRGenModule::getOrCreateStaticVarDecl(const VarDecl &D,
mlir::cir::GlobalLinkageKind Linkage) {
// In general, we don't always emit static var decls once before we reference
// them. It is possible to reference them before emitting the function that
// contains them, and it is possible to emit the containing function multiple
// times.
if (mlir::cir::GlobalOp ExistingGV = StaticLocalDeclMap[&D])
return ExistingGV;
QualType Ty = D.getType();
assert(Ty->isConstantSizeType() && "VLAs can't be static");
// Use the label if the variable is renamed with the asm-label extension.
std::string Name;
if (D.hasAttr<AsmLabelAttr>())
llvm_unreachable("asm label is NYI");
else
Name = getStaticDeclName(*this, D);
mlir::Type LTy = getTypes().convertTypeForMem(Ty);
assert(!UnimplementedFeature::addressSpaceInGlobalVar());
// OpenCL variables in local address space and CUDA shared
// variables cannot have an initializer.
mlir::Attribute Init = nullptr;
if (Ty.getAddressSpace() == LangAS::opencl_local ||
D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
llvm_unreachable("OpenCL & CUDA are NYI");
else
Init = builder.getZeroInitAttr(getTypes().ConvertType(Ty));
mlir::cir::GlobalOp GV = builder.createVersionedGlobal(
getModule(), getLoc(D.getLocation()), Name, LTy, false, Linkage);
// TODO(cir): infer visibility from linkage in global op builder.
GV.setVisibility(getMLIRVisibilityFromCIRLinkage(Linkage));
GV.setInitialValueAttr(Init);
GV.setAlignment(getASTContext().getDeclAlign(&D).getAsAlign().value());
if (supportsCOMDAT() && GV.isWeakForLinker())
llvm_unreachable("COMDAT globals are NYI");
if (D.getTLSKind())
llvm_unreachable("TLS mode is NYI");
setGVProperties(GV, &D);
// Make sure the result is of the correct type.
assert(!UnimplementedFeature::addressSpaceCasting());
// Ensure that the static local gets initialized by making sure the parent
// function gets emitted eventually.
const Decl *DC = cast<Decl>(D.getDeclContext());
// We can't name blocks or captured statements directly, so try to emit their
// parents.
if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
DC = DC->getNonClosureContext();
// FIXME: Ensure that global blocks get emitted.
if (!DC)
llvm_unreachable("address space is NYI");
}
GlobalDecl GD;
if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
llvm_unreachable("C++ constructors static var context is NYI");
else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
llvm_unreachable("C++ destructors static var context is NYI");
else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
GD = GlobalDecl(FD);
else {
// Don't do anything for Obj-C method decls or global closures. We should
// never defer them.
assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
}
if (GD.getDecl() && UnimplementedFeature::openMP()) {
// Disable emission of the parent function for the OpenMP device codegen.
llvm_unreachable("OpenMP is NYI");
}
return GV;
}
/// Add the initializer for 'D' to the global variable that has already been
/// created for it. If the initializer has a different type than GV does, this
/// may free GV and return a different one. Otherwise it just returns GV.
mlir::cir::GlobalOp
CIRGenFunction::addInitializerToStaticVarDecl(const VarDecl &D,
mlir::cir::GlobalOp GV) {
ConstantEmitter emitter(*this);
mlir::TypedAttr Init =
emitter.tryEmitForInitializer(D).dyn_cast<mlir::TypedAttr>();
assert(Init && "Expected typed attribute");
// If constant emission failed, then this should be a C++ static
// initializer.
if (!Init) {
if (!getLangOpts().CPlusPlus)
CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
else if (D.hasFlexibleArrayInit(getContext()))
CGM.ErrorUnsupported(D.getInit(), "flexible array initializer");
else {
// Since we have a static initializer, this global variable can't
// be constant.
GV.setConstant(false);
llvm_unreachable("C++ guarded init it NYI");
}
return GV;
}
#ifndef NDEBUG
CharUnits VarSize = CGM.getASTContext().getTypeSizeInChars(D.getType()) +
D.getFlexibleArrayInitChars(getContext());
CharUnits CstSize = CharUnits::fromQuantity(
CGM.getDataLayout().getTypeAllocSize(Init.getType()));
assert(VarSize == CstSize && "Emitted constant has unexpected size");
#endif
// The initializer may differ in type from the global. Rewrite
// the global to match the initializer. (We have to do this
// because some types, like unions, can't be completely represented
// in the LLVM type system.)
if (GV.getSymType() != Init.getType()) {
llvm_unreachable("static decl initializer type mismatch is NYI");
}
bool NeedsDtor =
D.needsDestruction(getContext()) == QualType::DK_cxx_destructor;
GV.setConstant(
CGM.isTypeConstant(D.getType(), /*ExcludeCtor=*/true, !NeedsDtor));
GV.setInitialValueAttr(Init);
emitter.finalize(GV);
if (NeedsDtor) {
// We have a constant initializer, but a nontrivial destructor. We still
// need to perform a guarded "initialization" in order to register the
// destructor.
llvm_unreachable("C++ guarded init is NYI");
}
return GV;
}
void CIRGenFunction::buildStaticVarDecl(const VarDecl &D,
mlir::cir::GlobalLinkageKind Linkage) {
// Check to see if we already have a global variable for this
// declaration. This can happen when double-emitting function
// bodies, e.g. with complete and base constructors.
auto globalOp = CGM.getOrCreateStaticVarDecl(D, Linkage);
// TODO(cir): we should have a way to represent global ops as values without
// having to emit a get global op. Sometimes these emissions are not used.
auto addr = getBuilder().createGetGlobal(globalOp);
CharUnits alignment = getContext().getDeclAlign(&D);
// Store into LocalDeclMap before generating initializer to handle
// circular references.
mlir::Type elemTy = getTypes().convertTypeForMem(D.getType());
setAddrOfLocalVar(&D, Address(addr, elemTy, alignment));
// We can't have a VLA here, but we can have a pointer to a VLA,
// even though that doesn't really make any sense.
// Make sure to evaluate VLA bounds now so that we have them for later.
if (D.getType()->isVariablyModifiedType())
llvm_unreachable("VLAs are NYI");
// Save the type in case adding the initializer forces a type change.
mlir::Type expectedType = addr.getType();
auto var = globalOp;
// CUDA's local and local static __shared__ variables should not
// have any non-empty initializers. This is ensured by Sema.
// Whatever initializer such variable may have when it gets here is
// a no-op and should not be emitted.
bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
D.hasAttr<CUDASharedAttr>();
// If this value has an initializer, emit it.
if (D.getInit() && !isCudaSharedVar)
var = addInitializerToStaticVarDecl(D, var);
var.setAlignment(alignment.getAsAlign().value());
if (D.hasAttr<AnnotateAttr>())
llvm_unreachable("Global annotations are NYI");
if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
llvm_unreachable("CIR global BSS section attribute is NYI");
if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
llvm_unreachable("CIR global Data section attribute is NYI");
if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
llvm_unreachable("CIR global Rodata section attribute is NYI");
if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
llvm_unreachable("CIR global Relro section attribute is NYI");
if (const SectionAttr *SA = D.getAttr<SectionAttr>())
llvm_unreachable("CIR global object file section attribute is NYI");
if (D.hasAttr<RetainAttr>())
llvm_unreachable("llvm.used metadata is NYI");
else if (D.hasAttr<UsedAttr>())
llvm_unreachable("llvm.compiler.used metadata is NYI");
// We may have to cast the constant because of the initializer
// mismatch above.
//
// FIXME: It is really dangerous to store this in the map; if anyone
// RAUW's the GV uses of this constant will be invalid.
// TODO(cir): its suppose to be possible that the initializer does not match
// the static var type. When this happens, there should be a cast here.
assert(var.getSymType() != expectedType &&
"static var init type mismatch is NYI");
CGM.setStaticLocalDeclAddress(&D, var);
assert(!UnimplementedFeature::reportGlobalToASan());
// Emit global variable debug descriptor for static vars.
auto *DI = getDebugInfo();
if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
llvm_unreachable("Debug info is NYI");
}
}
void CIRGenFunction::buildNullabilityCheck(LValue LHS, mlir::Value RHS,
SourceLocation Loc) {
if (!SanOpts.has(SanitizerKind::NullabilityAssign))
return;
llvm_unreachable("NYI");
}
void CIRGenFunction::buildScalarInit(const Expr *init, mlir::Location loc,
LValue lvalue, bool capturedByInit) {
Qualifiers::ObjCLifetime lifetime = Qualifiers::ObjCLifetime::OCL_None;
assert(!UnimplementedFeature::objCLifetime());
if (!lifetime) {
SourceLocRAIIObject Loc{*this, loc};
mlir::Value value = buildScalarExpr(init);
if (capturedByInit)
llvm_unreachable("NYI");
assert(!UnimplementedFeature::emitNullabilityCheck());
buildStoreThroughLValue(RValue::get(value), lvalue, true);
return;
}
llvm_unreachable("NYI");
}
void CIRGenFunction::buildExprAsInit(const Expr *init, const ValueDecl *D,
LValue lvalue, bool capturedByInit) {
SourceLocRAIIObject Loc{*this, getLoc(init->getSourceRange())};
if (capturedByInit)
llvm_unreachable("NYI");
QualType type = D->getType();
if (type->isReferenceType()) {
RValue rvalue = buildReferenceBindingToExpr(init);
if (capturedByInit)
llvm_unreachable("NYI");
buildStoreThroughLValue(rvalue, lvalue);
return;
}
switch (CIRGenFunction::getEvaluationKind(type)) {
case TEK_Scalar:
buildScalarInit(init, getLoc(D->getSourceRange()), lvalue);
return;
case TEK_Complex: {
assert(0 && "not implemented");
return;
}
case TEK_Aggregate:
assert(!type->isAtomicType() && "NYI");
AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
if (isa<VarDecl>(D))
Overlap = AggValueSlot::DoesNotOverlap;
else if (auto *FD = dyn_cast<FieldDecl>(D))
assert(false && "Field decl NYI");
else
assert(false && "Only VarDecl implemented so far");
// TODO: how can we delay here if D is captured by its initializer?
buildAggExpr(init,
AggValueSlot::forLValue(lvalue, AggValueSlot::IsDestructed,
AggValueSlot::DoesNotNeedGCBarriers,
AggValueSlot::IsNotAliased, Overlap));
return;
}
llvm_unreachable("bad evaluation kind");
}
void CIRGenFunction::buildDecl(const Decl &D) {
switch (D.getKind()) {
case Decl::ImplicitConceptSpecialization:
case Decl::HLSLBuffer:
case Decl::TopLevelStmt:
llvm_unreachable("NYI");
case Decl::BuiltinTemplate:
case Decl::TranslationUnit:
case Decl::ExternCContext:
case Decl::Namespace:
case Decl::UnresolvedUsingTypename:
case Decl::ClassTemplateSpecialization:
case Decl::ClassTemplatePartialSpecialization:
case Decl::VarTemplateSpecialization:
case Decl::VarTemplatePartialSpecialization:
case Decl::TemplateTypeParm:
case Decl::UnresolvedUsingValue:
case Decl::NonTypeTemplateParm:
case Decl::CXXDeductionGuide:
case Decl::CXXMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor:
case Decl::CXXConversion:
case Decl::Field:
case Decl::MSProperty:
case Decl::IndirectField:
case Decl::ObjCIvar:
case Decl::ObjCAtDefsField:
case Decl::ParmVar:
case Decl::ImplicitParam:
case Decl::ClassTemplate:
case Decl::VarTemplate:
case Decl::FunctionTemplate:
case Decl::TypeAliasTemplate:
case Decl::TemplateTemplateParm:
case Decl::ObjCMethod:
case Decl::ObjCCategory:
case Decl::ObjCProtocol:
case Decl::ObjCInterface:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
case Decl::ObjCProperty:
case Decl::ObjCCompatibleAlias:
case Decl::PragmaComment:
case Decl::PragmaDetectMismatch:
case Decl::AccessSpec:
case Decl::LinkageSpec:
case Decl::Export:
case Decl::ObjCPropertyImpl:
case Decl::FileScopeAsm:
case Decl::Friend:
case Decl::FriendTemplate:
case Decl::Block:
case Decl::Captured:
case Decl::UsingShadow:
case Decl::ConstructorUsingShadow:
case Decl::ObjCTypeParam:
case Decl::Binding:
case Decl::UnresolvedUsingIfExists:
llvm_unreachable("Declaration should not be in declstmts!");
case Decl::Record: // struct/union/class X;
case Decl::CXXRecord: // struct/union/class X; [C++]
if (auto *DI = getDebugInfo())
llvm_unreachable("NYI");
return;
case Decl::Enum: // enum X;
if (auto *DI = getDebugInfo())
llvm_unreachable("NYI");
return;
case Decl::Function: // void X();
case Decl::EnumConstant: // enum ? { X = ? }
case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
case Decl::Label: // __label__ x;
case Decl::Import:
case Decl::MSGuid: // __declspec(uuid("..."))
case Decl::TemplateParamObject:
case Decl::OMPThreadPrivate:
case Decl::OMPAllocate:
case Decl::OMPCapturedExpr:
case Decl::OMPRequires:
case Decl::Empty:
case Decl::Concept:
case Decl::LifetimeExtendedTemporary:
case Decl::RequiresExprBody:
case Decl::UnnamedGlobalConstant:
// None of these decls require codegen support.
return;
case Decl::NamespaceAlias:
case Decl::Using: // using X; [C++]
case Decl::UsingEnum: // using enum X; [C++]
case Decl::UsingDirective: // using namespace X; [C++]
assert(!UnimplementedFeature::generateDebugInfo());
return;
case Decl::UsingPack:
assert(0 && "Not implemented");
return;
case Decl::Var:
case Decl::Decomposition: {
const VarDecl &VD = cast<VarDecl>(D);
assert(VD.isLocalVarDecl() &&
"Should not see file-scope variables inside a function!");
buildVarDecl(VD);
if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
assert(0 && "Not implemented");
// FIXME: add this
// if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
// for (auto *B : DD->bindings())
// if (auto *HD = B->getHoldingVar())
// EmitVarDecl(*HD);
return;
}
case Decl::OMPDeclareReduction:
case Decl::OMPDeclareMapper:
assert(0 && "Not implemented");
case Decl::Typedef: // typedef int X;
case Decl::TypeAlias: { // using X = int; [C++0x]
QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
if (auto *DI = getDebugInfo())
assert(!UnimplementedFeature::generateDebugInfo());
if (Ty->isVariablyModifiedType())
buildVariablyModifiedType(Ty);
return;
}
}
}
namespace {
struct DestroyObject final : EHScopeStack::Cleanup {
DestroyObject(Address addr, QualType type,
CIRGenFunction::Destroyer *destroyer, bool useEHCleanupForArray)
: addr(addr), type(type), destroyer(destroyer),
useEHCleanupForArray(useEHCleanupForArray) {}
Address addr;
QualType type;
CIRGenFunction::Destroyer *destroyer;
bool useEHCleanupForArray;
void Emit(CIRGenFunction &CGF, Flags flags) override {
// Don't use an EH cleanup recursively from an EH cleanup.
[[maybe_unused]] bool useEHCleanupForArray =
flags.isForNormalCleanup() && this->useEHCleanupForArray;
CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
}
};
template <class Derived> struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable(Address addr, QualType type, mlir::Value NRVOFlag)
: NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
mlir::Value NRVOFlag;
Address Loc;
QualType Ty;
void Emit(CIRGenFunction &CGF, Flags flags) override {
llvm_unreachable("NYI");
}
virtual ~DestroyNRVOVariable() = default;
};
struct DestroyNRVOVariableCXX final
: DestroyNRVOVariable<DestroyNRVOVariableCXX> {
DestroyNRVOVariableCXX(Address addr, QualType type,
const CXXDestructorDecl *Dtor, mlir::Value NRVOFlag)
: DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
Dtor(Dtor) {}
const CXXDestructorDecl *Dtor;
void emitDestructorCall(CIRGenFunction &CGF) { llvm_unreachable("NYI"); }
};
struct DestroyNRVOVariableC final : DestroyNRVOVariable<DestroyNRVOVariableC> {
DestroyNRVOVariableC(Address addr, mlir::Value NRVOFlag, QualType Ty)
: DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
void emitDestructorCall(CIRGenFunction &CGF) { llvm_unreachable("NYI"); }
};
struct CallStackRestore final : EHScopeStack::Cleanup {
Address Stack;
CallStackRestore(Address Stack) : Stack(Stack) {}
bool isRedundantBeforeReturn() override { return true; }
void Emit(CIRGenFunction &CGF, Flags flags) override {
auto loc = Stack.getPointer().getLoc();
mlir::Value V = CGF.getBuilder().createLoad(loc, Stack);
CGF.getBuilder().createStackRestore(loc, V);
}
};
struct ExtendGCLifetime final : EHScopeStack::Cleanup {
const VarDecl &Var;
ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
void Emit(CIRGenFunction &CGF, Flags flags) override {
llvm_unreachable("NYI");
}
};
struct CallCleanupFunction final : EHScopeStack::Cleanup {
// FIXME: mlir::Value used as placeholder, check options before implementing
// Emit below.
mlir::Value CleanupFn;
const CIRGenFunctionInfo &FnInfo;
const VarDecl &Var;
CallCleanupFunction(mlir::Value CleanupFn, const CIRGenFunctionInfo *Info,
const VarDecl *Var)
: CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
void Emit(CIRGenFunction &CGF, Flags flags) override {
llvm_unreachable("NYI");
}
};
} // end anonymous namespace
/// Push the standard destructor for the given type as
/// at least a normal cleanup.
void CIRGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
Address addr, QualType type) {
assert(dtorKind && "cannot push destructor for trivial type");
CleanupKind cleanupKind = getCleanupKind(dtorKind);
pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
cleanupKind & EHCleanup);
}
void CIRGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
QualType type, Destroyer *destroyer,
bool useEHCleanupForArray) {
pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
useEHCleanupForArray);
}
namespace {
/// A cleanup which performs a partial array destroy where the end pointer is
/// regularly determined and does not need to be loaded from a local.
class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
mlir::Value ArrayBegin;
mlir::Value ArrayEnd;
QualType ElementType;
[[maybe_unused]] CIRGenFunction::Destroyer *Destroyer;
CharUnits ElementAlign;
public:
RegularPartialArrayDestroy(mlir::Value arrayBegin, mlir::Value arrayEnd,
QualType elementType, CharUnits elementAlign,
CIRGenFunction::Destroyer *destroyer)
: ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), ElementType(elementType),
Destroyer(destroyer), ElementAlign(elementAlign) {}
void Emit(CIRGenFunction &CGF, Flags flags) override {
llvm_unreachable("NYI");
}
};
/// A cleanup which performs a partial array destroy where the end pointer is