forked from dereklstinson/gocudnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcudnnConvolution_algofindbd.go
284 lines (252 loc) · 9.25 KB
/
cudnnConvolution_algofindbd.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
package gocudnn
/*
#include <cudnn.h>
void MakeAlgorithmforBWDData(cudnnAlgorithm_t *input,cudnnConvolutionBwdDataAlgo_t algo ){
input->algo.convBwdDataAlgo=algo;
}
*/
import "C"
import (
"fmt"
"unsafe"
"github.com/dereklstinson/cutil"
)
//Algo returns an Algorithm struct
func (c ConvBwdDataAlgo) Algo() Algorithm {
var algorithm C.cudnnAlgorithm_t
C.MakeAlgorithmforBWDData(&algorithm, c.c())
return Algorithm(algorithm)
}
//GetBackwardDataAlgorithmMaxCount returns the max number of Algorithm
func (c *ConvolutionD) getBackwardDataAlgorithmMaxCount(handle *Handle) (int32, error) {
var count C.int
x := Status(C.cudnnGetConvolutionBackwardDataAlgorithmMaxCount(handle.x, &count)).error("GetConvolutionBackwardDataAlgorithmMaxCount")
return int32(count), x
}
//FindBackwardDataAlgorithm will find the top performing algoriths and return the best algorithms in accending order.
func (c *ConvolutionD) FindBackwardDataAlgorithm(
handle *Handle,
w *FilterD,
dy *TensorD,
dx *TensorD,
) ([]ConvBwdDataAlgoPerformance, error) {
requestedAlgoCount, err := c.getBackwardDataAlgorithmMaxCount(handle)
if err != nil {
return nil, err
}
perfResults := make([]C.cudnnConvolutionBwdDataAlgoPerf_t, requestedAlgoCount)
var actualalgocount C.int
err = Status(C.cudnnFindConvolutionBackwardDataAlgorithm(
handle.x,
w.descriptor,
dy.descriptor,
c.descriptor,
dx.descriptor,
C.int(requestedAlgoCount),
&actualalgocount,
&perfResults[0],
)).error("FindConvolutionBackwardDataAlgorithm")
results := make([]ConvBwdDataAlgoPerformance, int32(actualalgocount))
for i := int32(0); i < int32(actualalgocount); i++ {
results[i] = convertConvBwdDataAlgoPerformance(perfResults[i])
}
return results, err
}
//FindBackwardDataAlgorithmEx finds some algorithms with memory
func (c *ConvolutionD) FindBackwardDataAlgorithmEx(
handle *Handle,
wD *FilterD, w cutil.Mem,
dyD *TensorD, dy cutil.Mem,
dxD *TensorD, dx cutil.Mem,
wspace cutil.Mem, wspacesize uint) ([]ConvBwdDataAlgoPerformance, error) {
reqAlgoCount, err := c.getBackwardDataAlgorithmMaxCount(handle)
if err != nil {
return nil, err
}
perfResults := make([]C.cudnnConvolutionBwdDataAlgoPerf_t, reqAlgoCount)
var actualalgocount C.int
err = Status(C.cudnnFindConvolutionBackwardDataAlgorithmEx(
handle.x,
wD.descriptor, w.Ptr(),
dyD.descriptor, dy.Ptr(),
c.descriptor,
dxD.descriptor, dx.Ptr(),
C.int(reqAlgoCount), &actualalgocount,
&perfResults[0], wspace.Ptr(), C.size_t(wspacesize))).error("cudnnFindConvolutionBackwardDataAlgorithmEx")
results := make([]ConvBwdDataAlgoPerformance, int32(actualalgocount))
for i := int32(0); i < int32(actualalgocount); i++ {
results[i] = convertConvBwdDataAlgoPerformance(perfResults[i])
}
return results, err
}
//FindBackwardDataAlgorithmExUS is just like FindBackwardDataAlgorithmEx but uses unsafe.Pointer instead of cutil.Mem
func (c *ConvolutionD) FindBackwardDataAlgorithmExUS(
handle *Handle,
wD *FilterD, w unsafe.Pointer,
dyD *TensorD, dy unsafe.Pointer,
dxD *TensorD, dx unsafe.Pointer,
wspace unsafe.Pointer, wspacesize uint) ([]ConvBwdDataAlgoPerformance, error) {
reqAlgoCount, err := c.getBackwardDataAlgorithmMaxCount(handle)
if err != nil {
return nil, err
}
perfResults := make([]C.cudnnConvolutionBwdDataAlgoPerf_t, reqAlgoCount)
var actualalgocount C.int
err = Status(C.cudnnFindConvolutionBackwardDataAlgorithmEx(
handle.x,
wD.descriptor, w,
dyD.descriptor, dy,
c.descriptor,
dxD.descriptor, dx,
C.int(reqAlgoCount), &actualalgocount,
&perfResults[0], wspace, C.size_t(wspacesize))).error("cudnnFindConvolutionBackwardDataAlgorithmEx")
results := make([]ConvBwdDataAlgoPerformance, int32(actualalgocount))
for i := int32(0); i < int32(actualalgocount); i++ {
results[i] = convertConvBwdDataAlgoPerformance(perfResults[i])
}
return results, err
}
//GetBackwardDataAlgorithm - This function serves as a heuristic for obtaining the best suited algorithm for (*ConvolutionD)BackwardData() for the given layer specifications.
//Based on the input preference, this function will either return the fastest algorithm or the fastest algorithm within a given memory limit.
//For an exhaustive search for the fastest algorithm, please use (*ConvolutionD)FindBackwardDataAlgorithm().
//
//Parameters:
// ----
// handle(input):
// Handle to a previously created cuDNN context.
// ----
// ---
// wD(input):
// Handle to a previously initialized filter descriptor
// ---
// ----
// dyD(input):
// Handle to the previously initialized input differential tensor descriptor.
// ----
// ---
// dxD(input):
// Handle to the previously initialized output tensor descriptor.
// ---
// ----
// pref(input):
// Enumerant to express the preference criteria in terms of memory requirement and speed.
// ----
// ---
// wspaceSIBlimit(input):
// It is to specify the maximum amount of GPU memory the user is willing to use as a workspace.
// This is currently a placeholder and is not used
// ---
// ----
// returns:
// ConvBwdDataAlgo and error.
// ----
//
//Possible Error Returns:
// nil:
//
// The function launched successfully.
//
// CUDNN_STATUS_BAD_PARAM:
//
// At least one of these conditions are met:
// 1) The numbers of feature maps of the input tensor and output tensor differ.
// 2) The DataType of the tensor descriptors or the filter are different.
func (c *ConvolutionD) GetBackwardDataAlgorithm(
handle *Handle,
wD *FilterD,
dyD *TensorD,
dxD *TensorD,
pref ConvBwdDataPref, wspaceSIBlimit uint) (ConvBwdDataAlgo, error) {
var algo C.cudnnConvolutionBwdDataAlgo_t
err := Status(C.cudnnGetConvolutionBackwardDataAlgorithm(
handle.x,
wD.descriptor,
dyD.descriptor,
c.descriptor,
dxD.descriptor,
pref.c(), (C.size_t)(wspaceSIBlimit), &algo)).error("GetConvolutionBackwardDataAlgorithm")
return ConvBwdDataAlgo(algo), err
}
//GetBackwardDataAlgorithmV7 - This function serves as a heuristic for obtaining the best suited algorithm for cudnnConvolutionBackwardData for the given layer specifications.
//This function will return all algorithms (including (MathType where available) sorted by expected (based on internal heuristic)
//relative performance with fastest being index 0 of perfResults.
//For an exhaustive search for the fastest algorithm, please use (*ConvolutionD)FindBackwardDataAlgorithm().
func (c *ConvolutionD) GetBackwardDataAlgorithmV7(
handle *Handle,
wD *FilterD,
dyD *TensorD,
dxD *TensorD,
) ([]ConvBwdDataAlgoPerformance, error) {
requestedAlgoCount, err := c.getBackwardDataAlgorithmMaxCount(handle)
if err != nil {
return nil, err
}
perfResults := make([]C.cudnnConvolutionBwdDataAlgoPerf_t, requestedAlgoCount)
var actualalgocount C.int
err = Status(C.cudnnGetConvolutionBackwardDataAlgorithm_v7(
handle.x,
wD.descriptor,
dyD.descriptor,
c.descriptor,
dxD.descriptor,
C.int(requestedAlgoCount),
&actualalgocount,
&perfResults[0])).error("GetConvolutionBackwardDataAlgorithmV7")
results := make([]ConvBwdDataAlgoPerformance, int32(actualalgocount))
for i := int32(0); i < int32(actualalgocount); i++ {
results[i] = convertConvBwdDataAlgoPerformance(perfResults[i])
}
return results, err
}
//ConvBwdDataAlgoPerf is used to find the best/fastest algorithms
//type ConvBwdDataAlgoPerformance C.cudnnConvolutionBwdDataAlgoPerf_t
//ConvBwdDataAlgoPerformance is the return struct in the finding algorithm funcs
type ConvBwdDataAlgoPerformance struct {
Algo ConvBwdDataAlgo `json:"algo,omitempty"`
Status Status `json:"status,omitempty"`
Time float32 `json:"time,omitempty"`
Memory uint `json:"memory,omitempty"`
Determinism Determinism `json:"determinism,omitempty"`
MathType MathType `json:"math_type,omitempty"`
}
func convertConvBwdDataAlgoPerformance(input C.cudnnConvolutionBwdDataAlgoPerf_t) ConvBwdDataAlgoPerformance {
var x ConvBwdDataAlgoPerformance
x.Algo = ConvBwdDataAlgo(input.algo)
x.Status = Status(input.status)
x.Time = float32(input.time)
x.Memory = uint(input.memory)
x.Determinism = Determinism(input.determinism)
x.MathType = MathType(input.mathType)
return x
}
func (c ConvBwdDataAlgo) print() {
switch c {
case ConvBwdDataAlgo(C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_0):
fmt.Println("ConvBwdDataAlgo0")
case ConvBwdDataAlgo(C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_1):
fmt.Println("ConvBwdDataAlgo1")
case ConvBwdDataAlgo(C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT):
fmt.Println("ConvBwdDataAlgoFFT")
case ConvBwdDataAlgo(C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING):
fmt.Println("ConvBwdDataAlgoFFTTiling")
case ConvBwdDataAlgo(C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD):
fmt.Println("ConvBwdDataAlgoWinograd")
case ConvBwdDataAlgo(C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED):
fmt.Println("ConvBwdDataAlgoWinoGradNonFused")
case ConvBwdDataAlgo(C.CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT):
fmt.Println("ConvBwdDataAlgoCount")
default:
fmt.Println("Not supported")
}
}
//Print prints a human readable copy of the algorithm
func (cbd ConvBwdDataAlgoPerformance) Print() {
fmt.Println("Convolution Backward Data Algorithm Performance")
fmt.Println("-------------------------------------------------")
ConvBwdFiltAlgo(cbd.Algo).print()
fmt.Println("Status:", Status(cbd.Algo).GetErrorString())
fmt.Println("Time:", cbd.Time)
fmt.Println("Memory:", cbd.Memory)
fmt.Println("Determinism:", cbd.Determinism)
fmt.Println("MathType:", cbd.MathType)
}