forked from dereklstinson/gocudnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcudnnRNN_algofindbwd.go
154 lines (145 loc) · 4.17 KB
/
cudnnRNN_algofindbwd.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
package gocudnn
/*
#include <cudnn.h>
*/
import "C"
import (
"unsafe"
"github.com/dereklstinson/cutil"
)
//GetRNNBackwardDataAlgorithmMaxCount gets the max number of algorithms for the back prop rnn
func (r *RNND) getRNNBackwardDataAlgorithmMaxCount(handle *Handle) (int32, error) {
var count C.int
err := Status(C.cudnnGetRNNBackwardDataAlgorithmMaxCount(
handle.x,
r.descriptor,
&count,
)).error("GetRNNBackwardDataAlgorithmMaxCount")
return int32(count), err
}
//FindRNNBackwardDataAlgorithmEx finds a list of Algorithm for backprop this passes like 26 parameters and pointers and stuff so watch out.
func (r *RNND) FindRNNBackwardDataAlgorithmEx(
handle *Handle,
yD []*TensorD, y cutil.Mem,
dyD []*TensorD, dy cutil.Mem,
dhyD *TensorD, dhy cutil.Mem,
dcyD *TensorD, dcy cutil.Mem,
wD *FilterD, w cutil.Mem,
hxD *TensorD, hx cutil.Mem,
cxD *TensorD, cx cutil.Mem,
dxD []*TensorD, dx cutil.Mem,
dhxD *TensorD, dhx cutil.Mem,
dcxD *TensorD, dcx cutil.Mem,
findIntensity float32,
wspace cutil.Mem, wspacesize uint,
rspace cutil.Mem, rspacesize uint,
) ([]AlgorithmPerformance, error) {
reqAlgocount, err := r.getRNNBackwardDataAlgorithmMaxCount(handle)
if err != nil {
return nil, err
}
seqLen := C.int(len(yD))
cyD := tensorDArrayToC(yD)
cdyD := tensorDArrayToC(dyD)
cdxD := tensorDArrayToC(dxD)
var actualcount C.int
perfresults := make([]C.cudnnAlgorithmPerformance_t, reqAlgocount)
if wspace == nil {
err := Status(C.cudnnFindRNNBackwardDataAlgorithmEx(
handle.x,
r.descriptor,
seqLen,
&cyD[0], y.Ptr(),
&cdyD[0], dy.Ptr(),
dhyD.descriptor, dhy.Ptr(),
dcyD.descriptor, dcy.Ptr(),
wD.descriptor, w.Ptr(),
hxD.descriptor, hx.Ptr(),
cxD.descriptor, cx.Ptr(),
&cdxD[0], dx.Ptr(),
dhxD.descriptor, dhx.Ptr(),
dcxD.descriptor, dcx.Ptr(),
C.float(findIntensity),
C.int(reqAlgocount),
&actualcount,
&perfresults[0],
nil,
C.size_t(0),
rspace.Ptr(), C.size_t(rspacesize), //31 total?
)).error("FindRNNBackwardDataAlgorithmEx")
return calgoperftogoarray(perfresults, handle.gogc), err
}
err = Status(C.cudnnFindRNNBackwardDataAlgorithmEx(
handle.x,
r.descriptor,
seqLen,
&cyD[0], y.Ptr(),
&cdyD[0], dy.Ptr(),
dhyD.descriptor, dhy.Ptr(),
dcyD.descriptor, dcy.Ptr(),
wD.descriptor, w.Ptr(),
hxD.descriptor, hx.Ptr(),
cxD.descriptor, cx.Ptr(),
&cdxD[0], dx.Ptr(),
dhxD.descriptor, dhx.Ptr(),
dcxD.descriptor, dcx.Ptr(),
C.float(findIntensity),
C.int(reqAlgocount),
&actualcount,
&perfresults[0],
wspace.Ptr(), C.size_t(wspacesize),
rspace.Ptr(), C.size_t(rspacesize),
)).error("FindRNNBackwardDataAlgorithmEx")
return calgoperftogoarray(perfresults, handle.gogc), err
}
//FindRNNBackwardDataAlgorithmExUS is like FindRNNBackwardDataAlgorithmEx but uses unsafe.Pointer instead of cutil.Mem
func (r *RNND) FindRNNBackwardDataAlgorithmExUS(
handle *Handle,
yD []*TensorD, y unsafe.Pointer,
dyD []*TensorD, dy unsafe.Pointer,
dhyD *TensorD, dhy unsafe.Pointer,
dcyD *TensorD, dcy unsafe.Pointer,
wD *FilterD, w unsafe.Pointer,
hxD *TensorD, hx unsafe.Pointer,
cxD *TensorD, cx unsafe.Pointer,
dxD []*TensorD, dx unsafe.Pointer,
dhxD *TensorD, dhx unsafe.Pointer,
dcxD *TensorD, dcx unsafe.Pointer,
findIntensity float32,
wspace unsafe.Pointer, wspacesize uint,
rspace unsafe.Pointer, rspacesize uint,
) ([]AlgorithmPerformance, error) {
reqAlgocount, err := r.getRNNBackwardDataAlgorithmMaxCount(handle)
if err != nil {
return nil, err
}
seqLen := C.int(len(yD))
cyD := tensorDArrayToC(yD)
cdyD := tensorDArrayToC(dyD)
cdxD := tensorDArrayToC(dxD)
var actualcount C.int
perfresults := make([]C.cudnnAlgorithmPerformance_t, reqAlgocount)
err = Status(C.cudnnFindRNNBackwardDataAlgorithmEx(
handle.x,
r.descriptor,
seqLen,
&cyD[0], y,
&cdyD[0], dy,
dhyD.descriptor, dhy,
dcyD.descriptor, dcy,
wD.descriptor, w,
hxD.descriptor, hx,
cxD.descriptor, cx,
&cdxD[0], dx,
dhxD.descriptor, dhx,
dcxD.descriptor, dcx,
C.float(findIntensity),
C.int(reqAlgocount),
&actualcount,
&perfresults[0],
wspace, C.size_t(wspacesize),
rspace, C.size_t(rspacesize),
//31 total?
)).error("FindRNNBackwardDataAlgorithmExUS")
return calgoperftogoarray(perfresults, handle.gogc), err
}