Skip to content

[Bug] Training Eagle3 for gpt-oss-120b fails with AttributeError: 'NoneType' object has no attribute 'evictable_size' #263

@gopalsarda

Description

@gopalsarda

Checklist

  • 1. I have searched related issues but cannot get the expected help.
  • 2. The bug has not been fixed in the latest version.
  • 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
  • 4. If the issue you raised is not a bug but a question, please raise a discussion at https://github.com/sgl-project/SpecForge/discussions/new/choose Otherwise, it will be closed.
  • 5. Please use English, otherwise it will be closed.

Describe the bug

Hi team, I am trying to train Eagle3 for gpt-oss-120b by following the example at run_gpt_oss_120b_eagle3_sgl_online.sh.

I am using docker.io/lmsysorg/sglang:dev as the base image, and run pip install -e . under the SpecForge git directory for installation.

Currently it is failing with the below error. Can someone please help understand what might be happening here? Thanks!

[rank0]: Traceback (most recent call last):
[rank0]:   File "/mnt/git/SpecForge/scripts/train_eagle3_sgl_online.py", line 775, in <module>
[rank0]:     main()
[rank0]:   File "/mnt/git/SpecForge/scripts/train_eagle3_sgl_online.py", line 771, in main
[rank0]:     trainer.train()
[rank0]:   File "/mnt/git/SpecForge/scripts/train_eagle3_sgl_online.py", line 699, in train
[rank0]:     data_for_draft = self.target_model.forward(
[rank0]:                      ^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/mnt/git/SpecForge/specforge/modeling/target/sgl_model_wrapper.py", line 253, in forward
[rank0]:     hidden_states_list, aux_hidden_states_list = self.extend(reqs)
[rank0]:                                                  ^^^^^^^^^^^^^^^^^
[rank0]:   File "/mnt/git/SpecForge/specforge/modeling/target/sgl_model_wrapper.py", line 200, in extend
[rank0]:     return _extend(
[rank0]:            ^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py", line 120, in decorate_context
[rank0]:     return func(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/mnt/git/SpecForge/specforge/modeling/target/sgl_model_wrapper.py", line 81, in _extend
[rank0]:     batch.prepare_for_extend()
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/sglang/srt/managers/schedule_batch.py", line 1266, in prepare_for_extend
[rank0]:     out_cache_loc = self.alloc_token_slots(extend_num_tokens)
[rank0]:                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/sglang/srt/managers/schedule_batch.py", line 988, in alloc_token_slots
[rank0]:     f"{self._available_and_evictable_str()}"
[rank0]:        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/sglang/srt/managers/schedule_batch.py", line 1843, in _available_and_evictable_str
[rank0]:     evictable_size = self.tree_cache.evictable_size()
[rank0]:                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: AttributeError: 'NoneType' object has no attribute 'evictable_size'

Reproduction

TARGET_MODEL_PATH=/mnt/models/gpt-oss-120b
EXP_PATH=/mnt/git/SpecForge/exp/2025-10-24
NUM_GPUS=8
MAX_LENGTH=8192
CHAT_TEMPLATE=gpt-oss-naive

torchrun \
    --standalone \
    --nproc_per_node $NUM_GPUS \
    scripts/train_eagle3_sgl_online.py \
    --target-model-path $TARGET_MODEL_PATH \
    --model-path $TARGET_MODEL_PATH \
    --draft-model-config ./configs/gpt-oss-120B-eagle3.json \
    --train-data-path $EXP_PATH/dataset/all_train.jsonl \
    --tp-size $NUM_GPUS \
    --output-dir $EXP_PATH/outputs \
    --num-epochs 2 \
    --batch-size 1 \
    --learning-rate 7e-5 \
    --draft-attention-backend sdpa \
    --draft-global-batch-size 32 \
    --max-length $MAX_LENGTH \
    --chat-template $CHAT_TEMPLATE \
    --cache-dir $EXP_PATH/cache/ \
    --mem-frac=0.4 \
    --total-steps=800000 \
    --warmup-ratio=0.015 \
    --dist-timeout=10 \
    --save-interval 40000 \
    --resume

Environment

I am using docker.io/lmsysorg/sglang:dev as the base image, and run pip install -e . under the SpecForge git directory for installation.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions