Skip to content

Accuracy very low and not improving #16

@bhawmik

Description

@bhawmik

Hi, I am using your basic LSTM architecture to recreate the chatbot. However, I am using GloVe embedding.
During my training process, my Training accuracy gets stuck at very low values (0.1969) and no progress happens. I am attaching my code below. Can you tell me what can be done to improve the training?

from keras.models import Sequential
from keras.layers import Embedding, Flatten, Dense, LSTM
from keras.optimizers import Adam

#model.reset_states()
model=Sequential()
model.add(Embedding(max_words,embedding_dim,input_length=maxlen))
model.add(LSTM(units=100,return_sequences=True, kernel_initializer="glorot_normal", recurrent_initializer="glorot_normal", activation='sigmoid'))
model.add(LSTM(units=100,return_sequences=True, kernel_initializer="glorot_normal", recurrent_initializer="glorot_normal", activation='sigmoid'))
model.add(LSTM(units=100,return_sequences=True, kernel_initializer="glorot_normal", recurrent_initializer="glorot_normal", activation='sigmoid'))
model.add(LSTM(units=100,return_sequences=True, kernel_initializer="glorot_normal", recurrent_initializer="glorot_normal", activation='sigmoid'))
model.summary()

model.layers[0].set_weights([embedding_matrix])
model.layers[0].trainable = False

model.compile(loss='cosine_proximity', optimizer='adam', metrics=['accuracy'])
#model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train,
epochs = 500,
batch_size = 32,
validation_data=(x_val,y_val))

Epoch 498/500
60/60 [==============================] - 0s 3ms/step - loss: -0.1303 - acc: 0.1969 - val_loss: -0.1785 - val_acc: 0.2909
Epoch 499/500
60/60 [==============================] - 0s 3ms/step - loss: -0.1303 - acc: 0.1969 - val_loss: -0.1785 - val_acc: 0.2909
Epoch 500/500
60/60 [==============================] - 0s 3ms/step - loss: -0.1303 - acc: 0.1969 - val_loss: -0.1785 - val_acc: 0.2909

Further training (on the same conversation data set ) does not improve accuracy.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions