|
| 1 | +use ff::PrimeField; |
1 | 2 | use group::prime::PrimeGroup; |
2 | 3 |
|
| 4 | +/// The result of this function is only approximately `ln(a)`. This is inherited from Zexe and libsnark. |
| 5 | +#[inline] |
| 6 | +const fn ln_without_floats(a: usize) -> usize { |
| 7 | + if a == 0 { |
| 8 | + 1 |
| 9 | + } else { |
| 10 | + // log2(a) * ln(2), ensure minimum value of 1 |
| 11 | + let result = (64 - (a - 1).leading_zeros()) as usize * 69 / 100; |
| 12 | + if result == 0 { |
| 13 | + 1 |
| 14 | + } else { |
| 15 | + result |
| 16 | + } |
| 17 | + } |
| 18 | +} |
| 19 | + |
3 | 20 | /// Trait for performing Multi-Scalar Multiplication (MSM). |
4 | 21 | /// |
5 | 22 | /// MSM computes the sum: |
@@ -43,16 +60,115 @@ impl<G: PrimeGroup> VariableMultiScalarMul for G { |
43 | 60 | /// # Panics |
44 | 61 | /// Panics if `scalars.len() != bases.len()`. |
45 | 62 | fn msm(scalars: &[Self::Scalar], bases: &[Self::Point]) -> Self { |
46 | | - assert_eq!( |
47 | | - scalars.len(), |
48 | | - bases.len(), |
49 | | - "scalars and bases must have the same length" |
50 | | - ); |
| 63 | + assert_eq!(scalars.len(), bases.len()); |
| 64 | + |
| 65 | + if scalars.is_empty() { |
| 66 | + return Self::identity(); |
| 67 | + } |
| 68 | + |
| 69 | + msm_internal(bases, scalars) |
| 70 | + } |
| 71 | +} |
| 72 | + |
| 73 | +fn msm_internal<G: PrimeGroup>(bases: &[G], scalars: &[G::Scalar]) -> G { |
| 74 | + let c = ln_without_floats(scalars.len()); |
| 75 | + let num_bits = <G::Scalar as PrimeField>::NUM_BITS as usize; |
| 76 | + // split `num_bits` into steps of `c`, but skip window 0. |
| 77 | + let windows = (0..num_bits).step_by(c); |
| 78 | + let buckets_num = 1 << c; |
| 79 | + |
| 80 | + let mut window_buckets = Vec::with_capacity(windows.len()); |
| 81 | + for window in windows { |
| 82 | + window_buckets.push((window, vec![G::identity(); buckets_num])); |
| 83 | + } |
| 84 | + |
| 85 | + for (scalar, base) in scalars.into_iter().zip(bases) { |
| 86 | + for (w, bucket) in window_buckets.iter_mut() { |
| 87 | + let scalar_repr = scalar.to_repr(); |
| 88 | + let scalar_bytes = scalar_repr.as_ref(); |
| 89 | + |
| 90 | + // Extract the relevant bits for this window |
| 91 | + let window_start = *w; |
| 92 | + let window_end = (window_start + c).min(scalar_bytes.len() * 8); |
| 93 | + |
| 94 | + if window_start >= scalar_bytes.len() * 8 { |
| 95 | + continue; // Window is beyond the scalar size |
| 96 | + } |
51 | 97 |
|
52 | | - let mut acc = Self::identity(); |
53 | | - for (s, p) in scalars.iter().zip(bases.iter()) { |
54 | | - acc += *p * s; |
| 98 | + let mut scalar_bits = 0u64; |
| 99 | + |
| 100 | + // Extract bits from the byte representation |
| 101 | + for bit_idx in window_start..window_end { |
| 102 | + let byte_idx = bit_idx / 8; |
| 103 | + let bit_in_byte = bit_idx % 8; |
| 104 | + |
| 105 | + if byte_idx < scalar_bytes.len() { |
| 106 | + let bit = (scalar_bytes[byte_idx] >> bit_in_byte) & 1; |
| 107 | + scalar_bits |= (bit as u64) << (bit_idx - window_start); |
| 108 | + } |
| 109 | + } |
| 110 | + |
| 111 | + // If the scalar is non-zero, we update the corresponding bucket. |
| 112 | + // (Recall that `buckets` doesn't have a zero bucket.) |
| 113 | + if scalar_bits != 0 { |
| 114 | + bucket[(scalar_bits - 1) as usize].add_assign(base); |
| 115 | + } |
55 | 116 | } |
56 | | - acc |
| 117 | + } |
| 118 | + |
| 119 | + let mut window_sums = window_buckets.iter().rev().map(|(_w, bucket)| { |
| 120 | + // `running_sum` = sum_{j in i..num_buckets} bucket[j], |
| 121 | + // where we iterate backward from i = num_buckets to 0. |
| 122 | + let mut bucket_sum = G::identity(); |
| 123 | + let mut bucket_running_sum = G::identity(); |
| 124 | + bucket.iter().rev().for_each(|b| { |
| 125 | + bucket_running_sum += b; |
| 126 | + bucket_sum += &bucket_running_sum; |
| 127 | + }); |
| 128 | + bucket_sum |
| 129 | + }); |
| 130 | + |
| 131 | + // We're traversing windows from high to low. |
| 132 | + let first = window_sums.next().unwrap(); |
| 133 | + window_sums.fold(first, |mut total, sum_i| { |
| 134 | + for _ in 0..c { |
| 135 | + total = total.double(); |
| 136 | + } |
| 137 | + total + sum_i |
| 138 | + }) |
| 139 | +} |
| 140 | + |
| 141 | +#[cfg(test)] |
| 142 | +mod tests { |
| 143 | + use super::*; |
| 144 | + use ff::Field; |
| 145 | + use group::Group; |
| 146 | + |
| 147 | + #[test] |
| 148 | + fn test_msm() { |
| 149 | + use bls12_381::{G1Projective, Scalar}; |
| 150 | + use rand::thread_rng; |
| 151 | + |
| 152 | + let mut rng = thread_rng(); |
| 153 | + const N: usize = 1024; |
| 154 | + |
| 155 | + // Generate random scalars and bases |
| 156 | + let scalars: Vec<Scalar> = (0..N).map(|_| Scalar::random(&mut rng)).collect(); |
| 157 | + let bases: Vec<G1Projective> = (0..N).map(|_| G1Projective::random(&mut rng)).collect(); |
| 158 | + |
| 159 | + // Compute MSM using our optimized implementation |
| 160 | + let msm_result = G1Projective::msm(&scalars, &bases); |
| 161 | + |
| 162 | + // Compute reference result using naive scalar multiplication and sum |
| 163 | + let naive_result = scalars |
| 164 | + .iter() |
| 165 | + .zip(bases.iter()) |
| 166 | + .map(|(scalar, base)| base * scalar) |
| 167 | + .fold(G1Projective::identity(), |acc, x| acc + x); |
| 168 | + |
| 169 | + assert_eq!( |
| 170 | + msm_result, naive_result, |
| 171 | + "MSM result should equal naive computation" |
| 172 | + ); |
57 | 173 | } |
58 | 174 | } |
0 commit comments