-
Notifications
You must be signed in to change notification settings - Fork 2
Open
Description
Trying to think about how/if to integrate PopSign ASL into experiments.
The PopSign ASL dataset doesn't actually use ASL Glosses for its categories, but English signs. So the vocabulary is not necessarily compatible with datasets such as ASL Citizen and Sem-Lex.
One possibility is to use the "ASL Knowledge Graph", which has relations like:
subject relation object object_dtype source type
id
NaN asllrp:rocket has_translation en:rocket string asllrp semantic
NaN asllrp:think+(2h)pass-out_2 has_translation en:think_pass_out string asllrp semantic
NaN asllrp:female-figure has_translation en:female_figure string asllrp semantic
NaN asl:stuck has_translation en:stuck string asllrp semantic
NaN asl:stuck has_translation en:stuck string asllex semantic
So we could
But there are issues with this:
- It's not one-to-one. There can be multiple gloss translations for each english word. So for example here are possibilities for "en:lamp"
subject relation object object_dtype source type
id
NaN iconicity:lamp has_translation EN:LAMP string iconicity semantic
NaN asllex:lamp has_translation EN:LAMP string asllex semantic
NaN asllrp:fs-lamp has_translation EN:LAMP string asllrp semantic
NaN asllex:lamp_2 has_translation EN:LAMP string asllex semantic
- The ASL Knowledge Graph has some interesting cases that might take extra checking
- separate entries for "asllex:release, rescue" (with a space) and "asllex:release,_rescue" (with an underscore)
- special cases that made need extra parsing like "engine_3/cylinder", 'asllrp:#all', 'asllrp:(1h)good/thank-you+honeymoon','asllrp:#will', 'asllrp:#sept', 'asllrp:#dec', 'asllrp:(s)old+#ff',
- etc
However if...
- there is only one gloss translation or all the gloss translations are the same
- the gloss translation is exactly the same spelling as the english
Then we could get some pretty confident translations. For example there are 2 Translations of en:orange: ['asllrp:orange', 'asllex:orange'], so we can guess that "ORANGE" would be a valid gloss for popsign ASL videos with label "orange".
If we do this, we get 121 mappings, listed below:
[('EN:STUCK', 'STUCK'), ('EN:FACE', 'FACE'), ('EN:NIGHT', 'NIGHT'), ('EN:GIFT', 'GIFT'), ('EN:BOOK', 'BOOK'), ('EN:FLOWER', 'FLOWER'), ('EN:APPLE', 'APPLE'), ('EN:BOAT', 'BOAT'), ('EN:GREEN', 'GREEN'), ('EN:BLUE', 'BLUE'), ('EN:NOW', 'NOW'), ('EN:HOME', 'HOME'), ('EN:GIRAFFE', 'GIRAFFE'), ('EN:BROWN', 'BROWN'), ('EN:NOSE', 'NOSE'), ('EN:FIRST', 'FIRST'), ('EN:TONGUE', 'TONGUE'), ('EN:MOON', 'MOON'), ('EN:ANY', 'ANY'), ('EN:RED', 'RED'), ('EN:HEAD', 'HEAD'), ('EN:OWL', 'OWL'), ('EN:UP', 'UP'), ('EN:DONKEY', 'DONKEY'), ('EN:MANY', 'MANY'), ('EN:PERSON', 'PERSON'), ('EN:AUNT', 'AUNT'), ('EN:RADIO', 'RADIO'), ('EN:YESTERDAY', 'YESTERDAY'), ('EN:DRY', 'DRY'), ('EN:WET', 'WET'), ('EN:WOLF', 'WOLF'), ('EN:ON', 'ON'), ('EN:ELEPHANT', 'ELEPHANT'), ('EN:BOY', 'BOY'), ('EN:TREE', 'TREE'), ('EN:FISH', 'FISH'), ('EN:LION', 'LION'), ('EN:WHY', 'WHY'), ('EN:BEFORE', 'BEFORE'), ('EN:HIDE', 'HIDE'), ('EN:ALLIGATOR', 'ALLIGATOR'), ('EN:READ', 'READ'), ('EN:MAKE', 'MAKE'), ('EN:FARM', 'FARM'), ('EN:THIRSTY', 'THIRSTY'), ('EN:HAPPY', 'HAPPY'), ('EN:HIGH', 'HIGH'), ('EN:COW', 'COW'), ('EN:BLACK', 'BLACK'), ('EN:WAIT', 'WAIT'), ('EN:AIRPLANE', 'AIRPLANE'), ('EN:NOT', 'NOT'), ('EN:TOMORROW', 'TOMORROW'), ('EN:DROP', 'DROP'), ('EN:UNCLE', 'UNCLE'), ('EN:BECAUSE', 'BECAUSE'), ('EN:FROG', 'FROG'), ('EN:DANCE', 'DANCE'), ('EN:BUG', 'BUG'), ('EN:PIG', 'PIG'), ('EN:DIRTY', 'DIRTY'), ('EN:HAVE', 'HAVE'), ('EN:HOT', 'HOT'), ('EN:DOWN', 'DOWN'), ('EN:PENCIL', 'PENCIL'), ('EN:BIRD', 'BIRD'), ('EN:MORNING', 'MORNING'), ('EN:WHERE', 'WHERE'), ('EN:RAIN', 'RAIN'), ('EN:FINGER', 'FINGER'), ('EN:BROTHER', 'BROTHER'), ('EN:TOUCH', 'TOUCH'), ('EN:HORSE', 'HORSE'), ('EN:TIGER', 'TIGER'), ('EN:ZIPPER', 'ZIPPER'), ('EN:GUM', 'GUM'), ('EN:WHITE', 'WHITE'), ('EN:ANIMAL', 'ANIMAL'), ('EN:TOOTHBRUSH', 'TOOTHBRUSH'), ('EN:GRASS', 'GRASS'), ('EN:STICKY', 'STICKY'), ('EN:IF', 'IF'), ('EN:TIME', 'TIME'), ('EN:ORANGE', 'ORANGE'), ('EN:CEREAL', 'CEREAL'), ('EN:SHOWER', 'SHOWER'), ('EN:GIRL', 'GIRL'), ('EN:YELLOW', 'YELLOW'), ('EN:COWBOY', 'COWBOY'), ('EN:DOLL', 'DOLL'), ('EN:ROOM', 'ROOM'), ('EN:HEN', 'HEN'), ('EN:EAR', 'EAR'), ('EN:MOUSE', 'MOUSE'), ('EN:BYE', 'BYE'), ('EN:ZEBRA', 'ZEBRA'), ('EN:HUNGRY', 'HUNGRY'), ('EN:YOURSELF', 'YOURSELF'), ('EN:FIND', 'FIND'), ('EN:MOUTH', 'MOUTH'), ('EN:PENNY', 'PENNY'), ('EN:DRYER', 'DRYER'), ('EN:PEN', 'PEN'), ('EN:BACKYARD', 'BACKYARD'), ('EN:POOL', 'POOL'), ('EN:LIPS', 'LIPS'), ('EN:CHAIR', 'CHAIR'), ('EN:STAIRS', 'STAIRS'), ('EN:AWAKE', 'AWAKE'), ('EN:YUCKY', 'YUCKY'), ('EN:PLEASE', 'PLEASE'), ('EN:LOUD', 'LOUD'), ('EN:CHEEK', 'CHEEK'), ('EN:PRETTY', 'PRETTY'), ('EN:DRAWER', 'DRAWER'), ('EN:PRETEND', 'PRETEND'), ('EN:REFRIGERATOR', 'REFRIGERATOR'), ('EN:BEDROOM', 'BEDROOM'), ('EN:FRENCHFRIES', 'FRENCHFRIES'), ('EN:ICECREAM', 'ICECREAM')]Metadata
Metadata
Assignees
Labels
No labels