You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Major data bundle updates (CIViC, ClinVar, CancerMine, UniProt KB, Open Targets Platform, Pfam, DisGeNET, GENCODE)
26
29
* VEP v101
@@ -49,10 +52,10 @@ A few screenshots of the dashboard-type HTML output (new in 0.9.0) is shown belo
49
52
50
53
### Example reports
51
54
52
-
*[Cervical cancer sample (tumor-only)](http://insilico.hpc.uio.no/pcgr/example_reports/0.9.0rc/TCGA-FU-A3HZ-01A_TO.pcgr_acmg.grch37.flexdb.html)
53
-
*[Lung cancer sample (tumor-control)](http://insilico.hpc.uio.no/pcgr/example_reports/0.9.0rc/TCGA-95-7039-01A.pcgr_acmg.grch37.flexdb.html)
54
-
*[Breast cancer sample (tumor-control)](http://insilico.hpc.uio.no/pcgr/example_reports/0.9.0rc/TCGA-EW-A1J5-01A.pcgr_acmg.grch37.flexdb.html)
55
-
*[Brain cancer sample (tumor-control)](http://insilico.hpc.uio.no/pcgr/example_reports/0.9.0rc/TCGA-14-0866-01B.pcgr_acmg.grch37.flexdb.html)
55
+
*[Cervical cancer sample (tumor-only)](http://insilico.hpc.uio.no/pcgr/example_reports/0.9.1/TCGA-EA-A410-01A_TO.pcgr_acmg.grch37.flexdb.html)
56
+
*[Lung cancer sample (tumor-control)](http://insilico.hpc.uio.no/pcgr/example_reports/0.9.1/TCGA-05-4427-01A.pcgr_acmg.grch37.flexdb.html)
57
+
*[Colorectal cancer sample (tumor-control)](http://insilico.hpc.uio.no/pcgr/example_reports/0.9.1/TCGA-AD-5900-01A.pcgr_acmg.grch37.flexdb.html)
58
+
*[Brain cancer sample (tumor-control)](http://insilico.hpc.uio.no/pcgr/example_reports/0.9.1/TCGA-QH-A6CU-01A.pcgr_acmg.grch37.flexdb.html)
56
59
57
60
(to view the rmarkdown-based reports, simply remove _.flexdb._ in the file names for the flexdashboard reports)
58
61
@@ -68,23 +71,22 @@ A few screenshots of the dashboard-type HTML output (new in 0.9.0) is shown belo
68
71
69
72
Sigve Nakken, Ghislain Fournous, Daniel Vodák, Lars Birger Aaasheim, Ola Myklebost, and Eivind Hovig. __Personal Cancer Genome Reporter: variant interpretation report for precision oncology__ (2017). _Bioinformatics_. 34(10):1778–1780. doi:[10.1093/bioinformatics/btx817](https://doi.org/10.1093/bioinformatics/btx817)
70
73
71
-
### Annotation resources included in PCGR - 0.9.0
74
+
### Annotation resources included in PCGR - 0.9.1
72
75
73
76
*[VEP](http://www.ensembl.org/info/docs/tools/vep/index.html) - Variant Effect Predictor v101 (GENCODE v35/v19 as the gene reference dataset)
74
-
*[CIViC](http://civic.genome.wustl.edu) - Clinical interpretations of variants in cancer (September 20th 2020)
75
-
*[ClinVar](http://www.ncbi.nlm.nih.gov/clinvar/) - Database of variants with clinical significance (August 2020)
77
+
*[CIViC](http://civic.genome.wustl.edu) - Clinical interpretations of variants in cancer (November 18th 2020)
78
+
*[ClinVar](http://www.ncbi.nlm.nih.gov/clinvar/) - Database of variants with clinical significance (November 2020)
76
79
*[DoCM](http://docm.genome.wustl.edu) - Database of curated mutations (v3.2, Apr 2016)
77
80
*[CGI](http://www.cancergenomeinterpreter.org/biomarkers) - Cancer Biomarkers database (Jan 17th 2018)
78
-
*[DisGeNET](http://www.disgenet.org) - Database of gene-tumor type associations (v7.0, May 2020)
79
81
*[Cancer Hotspots](http://cancerhotspots.org) - Resource for statistically significant mutations in cancer (v2 - 2017)
80
82
*[dBNSFP](https://sites.google.com/site/jpopgen/dbNSFP) - Database of non-synonymous functional predictions (v4.1, June 2020)
81
83
*[TCGA](https://portal.gdc.cancer.gov/) - somatic mutations discovered across 33 tumor type cohorts (The Cancer Genome Atlas (TCGA), release 25, July 2020)
82
84
*[CHASMplus](https://karchinlab.github.io/CHASMplus/) - predicted driver mutations across 33 tumor type cohorts in TCGA
83
-
*[UniProt/SwissProt KnowledgeBase](http://www.uniprot.org) - Resource on protein sequence and functional information (2020_04, August 2020)
85
+
*[UniProt/SwissProt KnowledgeBase](http://www.uniprot.org) - Resource on protein sequence and functional information (2020_05, October 2020)
84
86
*[Pfam](http://pfam.xfam.org) - Database of protein families and domains (v33, May 2020)
85
-
*[Open Targets Platform](https://targetvalidation.org) - Target-disease and target-drug associations (2020_04, June 2020)
87
+
*[Open Targets Platform](https://targetvalidation.org) - Target-disease and target-drug associations (2020_09, September 2020)
86
88
*[ChEMBL](https://www.ebi.ac.uk/chembl/) - Manually curated database of bioactive molecules (v27, May 2020)
87
-
*[CancerMine](https://zenodo.org/record/3472758#.XZjCqeczaL4) - Literature-mined database of tumor suppressor genes/proto-oncogenes (v28, September 2020)
89
+
*[CancerMine](https://zenodo.org/record/4270451#.X7t43qpKiHE) - Literature-mined database of tumor suppressor genes/proto-oncogenes (v30, November 2020)
88
90
89
91
90
92
### Getting started
@@ -95,6 +97,10 @@ An installation of Python (version _3.6_) is required to run PCGR. Check that Py
95
97
96
98
pip install toml
97
99
100
+
101
+
**IMPORTANT NOTE**: STEP 1 & 2 below outline installation guidelines for running PCGR with Docker. If you want to install and run PCGR without the use of Docker (i.e. through Conda), follow [these instructions](install_no_docker/README.md)
102
+
103
+
98
104
#### STEP 1: Installation of Docker
99
105
100
106
1.[Install the Docker engine](https://docs.docker.com/engine/installation/) on your preferred platform
@@ -107,33 +113,35 @@ An installation of Python (version _3.6_) is required to run PCGR. Check that Py
107
113
- CPUs: minimum 4
108
114
-[How to - Mac OS X](https://docs.docker.com/docker-for-mac/#advanced)
109
115
116
+
110
117
#### STEP 2: Download PCGR and data bundle
111
118
112
119
##### Development version
113
120
114
121
a. Clone the PCGR GitHub repository (includes run script and default configuration file): `git clone https://github.com/sigven/pcgr.git`
115
122
116
123
b. Download and unpack the latest data bundles in the PCGR directory
117
-
*[grch37 data bundle - 20200920](http://insilico.hpc.uio.no/pcgr/pcgr.databundle.grch37.20200920.tgz) (approx 17Gb)
118
-
*[grch38 data bundle - 20200920](http://insilico.hpc.uio.no/pcgr/pcgr.databundle.grch38.20200920.tgz) (approx 18Gb)
124
+
*[grch37 data bundle - 20201123](http://insilico.hpc.uio.no/pcgr/pcgr.databundle.grch37.20201123.tgz) (approx 17Gb)
125
+
*[grch38 data bundle - 20201123](http://insilico.hpc.uio.no/pcgr/pcgr.databundle.grch38.20201123.tgz) (approx 18Gb)
119
126
**Unpacking*: `gzip -dc pcgr.databundle.grch37.YYYYMMDD.tgz | tar xvf -`
120
127
121
-
c. Pull the [PCGR Docker image (*dev*)](https://hub.docker.com/r/sigven/pcgr/) from DockerHub (approx 6.8Gb):
128
+
c. Pull the [PCGR Docker image (*dev*)](https://hub.docker.com/r/sigven/pcgr/) from DockerHub (approx 5.1Gb):
Minimum number of SNVs required for reconstruction of mutational signatures (SBS) by MutationalPatterns (default: 200, minimum n = 100)
275
285
--all_reference_signatures
@@ -285,15 +295,15 @@ A tumor sample report is generated by calling the Python script __pcgr.py__, whi
285
295
286
296
The _examples_ folder contain input VCF files from two tumor samples sequenced within TCGA (**GRCh37** only). It also contains a PCGR configuration file customized for these VCFs. A report for a colorectal tumor case can be generated by running the following command in your terminal window:
* added possibility to configure algorithm for TMB calculation, optional argument `tmb_algorithm` - all coding variants (__all_coding__) or non-synonymous variants only (__nonsyn__)
9
+
* R code subject to static analysis with [lintr](https://github.com/jimhester/lintr)
10
+
* Improved Conda recipe (i.e. `meta.yaml`) with version pinning of all package dependencies
11
+
12
+
##### Changed
13
+
* Removed DisGeNET annotations from output (associations from Open Targets Platform serve same purpose)
14
+
* Version pinning of software dependencies in Dockerfile:
15
+
* All R packages necessary for PCGR is installed using the [renv framework](https://rstudio.github.io/renv/index.html), ensuring improved versioning and reproducibility
16
+
* Other tools/utilities and Python libraries that have been version pinned:
0 commit comments