You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+20-16Lines changed: 20 additions & 16 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -2,20 +2,23 @@
2
2
3
3
### Overview
4
4
5
-
The Personal Cancer Genome Reporter (PCGR) is a stand-alone software package intended for analysis and clinical interpretation of individual cancer genomes. It interprets both somatic SNVs/InDels and copy number aberrations. The software extends basic gene and variant annotations from the [Ensembl’s Variant Effect Predictor (VEP)](http://www.ensembl.org/info/docs/tools/vep/index.html) with oncology-relevant, up-to-date annotations retrieved flexibly through [vcfanno](https://github.com/brentp/vcfanno), and produces HTML reports that can be navigated by clinical oncologists (Figure 1).
5
+
The Personal Cancer Genome Reporter (PCGR) is a stand-alone software package for functional annotation and translation of individual cancer genomes for precision oncology. It interprets both somatic SNVs/InDels and copy number aberrations. The software extends basic gene and variant annotations from the [Ensembl’s Variant Effect Predictor (VEP)](http://www.ensembl.org/info/docs/tools/vep/index.html) with oncology-relevant, up-to-date annotations retrieved flexibly through [vcfanno](https://github.com/brentp/vcfanno), and produces interactive HTML reports intended for clinical interpretation (Figure 1).
6
6
7
7

8
8
9
9
### Example reports
10
-
* <ahref="http://folk.uio.no/sigven/tumor_sample.COAD.pcgr.html"target="_blank">View an example report for a colorectal tumor sample (TCGA)</a>
11
-
* <ahref="http://folk.uio.no/sigven/tumor_sample.BRCA.pcgr.html"target="_blank">View an example report for a breast tumor sample (TCGA)</a>
10
+
* <ahref="http://folk.uio.no/sigven/tumor_sample.COAD.pcgr.html"target="_blank">Report for a colorectal tumor sample (TCGA)</a>
11
+
* <ahref="http://folk.uio.no/sigven/tumor_sample.BRCA.pcgr.html"target="_blank">Report for a breast tumor sample (TCGA)</a>
### Annotation resources included in PCGR (v0.3.2)
19
+
Sigve Nakken, Ghislain Fournous, Daniel Vodák, Lars Birger Aaasheim, and Eivind Hovig. __Personal Cancer Genome Reporter: Variant Interpretation Report For Precision Oncology__ (2017). bioRxiv. doi:[10.1101/122366](https://doi.org/10.1101/122366)
20
+
21
+
### Annotation resources included in PCGR (v0.3.3)
19
22
20
23
*[VEP v85](http://www.ensembl.org/info/docs/tools/vep/index.html) - Variant Effect Predictor release 85 (GENCODE v19 as the gene reference dataset)
21
24
*[COSMIC v80](http://cancer.sanger.ac.uk/cosmic/) - Catalogue of somatic mutations in cancer (February 2017)
@@ -53,16 +56,16 @@ A local installation of Python (it has been tested with [version 2.7.13](https:/
53
56
54
57
#### STEP 2: Download PCGR
55
58
56
-
<fontcolor="red"><b>April 19th 2017</b>: New release (0.3.2)</font>
59
+
<fontcolor="red"><b>April 20th 2017</b>: New release (0.3.3)</font>
57
60
58
-
1. Download and unpack the [latest release (0.3.2)](https://github.com/sigven/pcgr/releases/latest)
61
+
1. Download and unpack the [latest release (0.3.3)](https://github.com/sigven/pcgr/releases/latest)
59
62
2. Download and unpack the data bundle (approx. 17Gb) in the PCGR directory
60
-
* Download [the latest data bundle](https://drive.google.com/file/d/0B8aYD2TJ472mQjZOMmg4djZfT1k/) from Google Drive to `~/pcgr-X.X` (replace _X.X_ with the version number, e.g `~/pcgr-0.3.2`)
63
+
* Download [the latest data bundle](https://drive.google.com/file/d/0B8aYD2TJ472mQjZOMmg4djZfT1k/) from Google Drive to `~/pcgr-X.X` (replace _X.X_ with the version number, e.g `~/pcgr-0.3.3`)
61
64
* Unpack the data bundle, e.g. through the following Unix command: `gzip -dc pcgr.databundle.GRCh37.YYYYMMDD.tgz | tar xvf -`
62
65
63
66
A _data/_ folder within the _pcgr-X.X_ software folder should now have been produced
64
-
3. Pull the [PCGR Docker image (0.3.2)](https://hub.docker.com/r/sigven/pcgr/) from DockerHub (3.1Gb):
@@ -73,12 +76,9 @@ The PCGR workflow accepts two types of input files:
73
76
74
77
PCGR can be run with either or both of the two input files present.
75
78
76
-
The following requirements __MUST__ be met by the input VCF for PCGR to work properly:
79
+
* We __strongly__ recommend that the input VCF is compressed and indexed using [bgzip](http://www.htslib.org/doc/tabix.html) and [tabix](http://www.htslib.org/doc/tabix.html)
80
+
* If the input VCF contains multi-allelic sites, these will be subject to [decomposition](http://genome.sph.umich.edu/wiki/Vt#Decompose)
77
81
78
-
1. Variants in the raw VCF that contain multiple alternative alleles (e.g. "multiple ALTs") must be split into variants with a single alternative allele. This can be done with the help of either [vt decompose](http://genome.sph.umich.edu/wiki/Vt#Decompose) or [vcflib's vcfbreakmulti](https://github.com/vcflib/vcflib#vcflib). We will add integrated support for this in an upcoming release
79
-
2. The contents of the VCF must be sorted correctly (i.e. according to chromosomal order and chromosomal position). This can be obtained by [vcftools](https://vcftools.github.io/perl_module.html#vcf-sort).
80
-
* We strongly recommend that the input VCF is compressed and indexed using [bgzip](http://www.htslib.org/doc/tabix.html) and [tabix](http://www.htslib.org/doc/tabix.html)
81
-
* 'chr' must be stripped from the chromosome names
82
82
83
83
The tab-separated values file with copy number aberrations __MUST__ contain the following four columns:
84
84
* Chromosome
@@ -112,7 +112,7 @@ A tumor sample report is generated by calling the Python script __pcgr.py__ in t
112
112
113
113
positional arguments:
114
114
pcgr_dir PCGR base directory with accompanying data directory,
115
-
e.g. ~/pcgr-0.3.2
115
+
e.g. ~/pcgr-0.3.3
116
116
output_dir Output directory
117
117
sample_id Tumor sample/cancer genome identifier - prefix for
118
118
output files
@@ -146,7 +146,7 @@ A tumor sample report is generated by calling the Python script __pcgr.py__ in t
146
146
147
147
The _examples_ folder contain sample files from TCGA. A report for a colorectal tumor case can be generated through the following command:
This command will run the Docker-based PCGR workflow and produce the following output files in the _examples_ folder:
152
152
@@ -157,3 +157,7 @@ This command will run the Docker-based PCGR workflow and produce the following o
157
157
5.__tumor_sample.COAD.pcgr.mutational_signatures.tsv__ - Tab-separated values file with estimated contributions by known mutational signatures and associated underlying etiologies
158
158
6.__tumor_sample.COAD.pcgr.snvs_indels.biomarkers.tsv__ - Tab-separated values file with clinical evidence items associated with biomarkers for diagnosis, prognosis or drug sensitivity/resistance
159
159
7.__tumor_sample.COAD.pcgr.cna_segments.tsv.gz__ - Tab-separated values file with annotations of gene transcripts that overlap with somatic copy number aberrations
<liclass="toctree-l2"><aclass="reference internal" href="#what-is-the-personal-cancer-genome-reporter-pcgr">What is the Personal Cancer Genome Reporter (PCGR)?</a></li>
92
+
<liclass="toctree-l2"><aclass="reference internal" href="#what-is-the-personal-cancer-genome-reporter-pcgr">What is the Personal Cancer Genome Reporter (PCGR)?</a><ul>
<h2>What is the Personal Cancer Genome Reporter (PCGR)?<aclass="headerlink" href="#what-is-the-personal-cancer-genome-reporter-pcgr" title="Permalink to this headline">¶</a></h2>
149
153
<p>The Personal Cancer Genome Reporter (PCGR) is a stand-alone software
150
-
package intended for analysis and clinical interpretation of individual
151
-
cancer genomes. It interprets both somatic SNVs/InDels and copy number
152
-
aberrations. The software extends basic gene and variant annotations
153
-
from the <aclass="reference external" href="http://www.ensembl.org/info/docs/tools/vep/index.html">Ensembl’s Variant Effect Predictor
154
+
package for functional annotation and translation of individual cancer
155
+
genomes for precision oncology. It interprets both somatic SNVs/InDels
156
+
and copy number aberrations. The software extends basic gene and variant
157
+
annotations from the <aclass="reference external" href="http://www.ensembl.org/info/docs/tools/vep/index.html">Ensembl’s Variant Effect Predictor
154
158
(VEP)</a> with
155
159
oncology-relevant, up-to-date annotations retrieved flexibly through
156
-
<aclass="reference external" href="https://github.com/brentp/vcfanno">vcfanno</a>, and produces HTML
157
-
reports that can be navigated by clinical oncologists (Figure 1).</p>
160
+
<aclass="reference external" href="https://github.com/brentp/vcfanno">vcfanno</a>, and produces
161
+
interactive HTML reports intended for clinical interpretation (Figure
162
+
1).</p>
158
163
<divclass="figure">
159
164
<imgalt="" src="_images/PCGR_workflow.png" />
160
165
</div>
161
166
<p>The Personal Cancer Genome Reporter has been developed by scientists
162
167
affiliated with the <aclass="reference external" href="http://cancergenomics.no">Norwegian Cancer Genomics
163
168
Consortium</a>, at the <aclass="reference external" href="http://radium.no">Institute for Cancer
164
169
Research/Oslo University Hospital</a>.</p>
170
+
<divclass="section" id="example-reports">
171
+
<h3>Example reports<aclass="headerlink" href="#example-reports" title="Permalink to this headline">¶</a></h3>
172
+
<ulclass="simple">
173
+
<li>Report for a colorectal tumor sample (TCGA)</li>
174
+
<li>Report for a breast tumor sample (TCGA)</li>
175
+
</ul>
176
+
</div>
165
177
</div>
166
178
<divclass="section" id="why-use-pcgr">
167
179
<h2>Why use PCGR?<aclass="headerlink" href="#why-use-pcgr" title="Permalink to this headline">¶</a></h2>
@@ -176,6 +188,11 @@ <h2>Why use PCGR?<a class="headerlink" href="#why-use-pcgr" title="Permalink to
176
188
and variant level. The application generates a tiered report that will
177
189
aid the interpretation of individual cancer genomes in a clinical
178
190
setting.</p>
191
+
<p>If you use PCGR, please cite our paper:</p>
192
+
<p>Sigve Nakken, Ghislain Fournous, Daniel Vodák, Lars Birger Aaasheim, and
193
+
Eivind Hovig. <strong>Personal Cancer Genome Reporter: Variant Interpretation
194
+
Report For Precision Oncology</strong> (2017). bioRxiv.
0 commit comments