|
| 1 | +\begin[papersize=a5]{document} |
| 2 | +\use[module=packages.math] |
| 3 | +\nofolios |
| 4 | +\neverindent |
| 5 | +\define[command=section]{\medskip\noindent\font[size=12pt]{\strong{\process}}\medskip} |
| 6 | +\font[family=Libertinus Serif] |
| 7 | + |
| 8 | +\section[numbered=false]{Laplace’s method} |
| 9 | + |
| 10 | +Suppose \math{f(x)} is a twice continuously differentiable function on \math{[a,b]}, and there exists a unique point \math{x_0 \in (a,b)} such that: |
| 11 | +\math[mode=display]{f(x_0) = \max_{x \in [a,b]} f(x) \quad \text{and} \quad f''(x_0) < 0.} |
| 12 | + |
| 13 | +Then: |
| 14 | +\math[mode=display, numbered=true]{\lim_{n\to\infty} \frac{\int_a^b e^{nf(x)} \, dx}{e^{nf(x_0)} \sqrt{\frac{2\pi}{n(-f''(x_0))}}}= 1.} |
| 15 | + |
| 16 | +\section[numbered=false]{Euler Product Formula} |
| 17 | + |
| 18 | +Let’s take \math{s \in \mathbb{C}}. |
| 19 | +The Euler Product Formula, when \math{\Re(s) > 1}, is given by: |
| 20 | +\math[mode=display, numbered=true]{\prod_{p \in \mathbb{P}} (\frac{1}{1 - p^{-s}}) |
| 21 | += \prod_{p \in \mathbb{P}} (\sum_{k=0}^{\infty}\frac{1}{p^{ks}}) |
| 22 | += \sum_{n=1}^{\infty} \frac{1}{n^s} |
| 23 | += \zeta (s) |
| 24 | += \frac{1}{\Gamma(s)} \int_0^\infty \frac{x ^ {s-1}}{e ^ x - 1} \, \mathrm{d}x} |
| 25 | + |
| 26 | +Where: |
| 27 | +\math[mode=display]{\Gamma (s) = \int_0^\infty x^{s-1}\,e^{-x} \, \mathrm{d}x} |
| 28 | + |
| 29 | +\section[numbered=false]{Stirling’s formula} |
| 30 | + |
| 31 | +It is also called Stirling’s approximation for factorials: |
| 32 | +\math[mode=display, numbered=true]{\lim_{n\to +\infty} \frac{n\,!}{\sqrt{2 \pi n} \; (n/e)^{n}} = 1} |
| 33 | + |
| 34 | +Also frequently written as: |
| 35 | +\math[mode=display]{n\,!\sim \sqrt{2\pi n}\, (\frac{n}{e})^n} |
| 36 | + |
| 37 | +One can easily derive the following limit from Stirling’s formula: |
| 38 | +\math[mode=display]{\lim_{n\to\infty} \frac{(n!)^{1/n}}{n} = \frac{1}{e}} |
| 39 | + |
| 40 | +\end{document} |
0 commit comments