-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
525 lines (458 loc) · 19.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import os
import torch
import drjit
import mitsuba as mi
import numpy as np
from tqdm import tqdm
from collections import defaultdict
from cleanfid import fid
import utils
import rendering
from transforms import get_transforms
class ModelTester:
def __init__(
self,
model_manager,
data_loaders,
configs,
device,
output_directory,
phase="val",
) -> None:
self._manager = model_manager
self._loaders = data_loaders
self._configs = configs
self._device = device
self._output_directory = output_directory
self._sample_count_rendering = 48
assert phase in ["val", "test"]
self._phase = phase
def __call__(self) -> None:
self.render_learned_heat_diffusion_times(
param_name="diffusion", n_heat_sources=8
)
# self.render_more_gen_textures(n_shapes=8, n_variants=8)
self.render_gt(num_views=5)
for n in range(3):
self.generate_pcltex_for_whole_set(run_n=n)
self.render_pregenerated_pcltex(run_n=n, num_views=1)
self.render_pregenerated_pcltex(run_n=n, num_views=5)
self.compute_fid_and_kid(
os.path.join(self._output_directory, "rendered_gts"),
os.path.join(self._output_directory, "rendered_all_multiview_0"),
"proposed",
)
# p = self._output_directory
# self.parse_lpips_files_and_save_average(
# [os.path.join(p, f) for f in ("1vs2.txt", "2vs3.txt", "1vs3.txt")]
# )
def change_sampling_density(self, n_poisson_samples: int = 20_000):
transforms_configs = self._configs["data"]["transforms_config"]
if "n_poisson_samples" in transforms_configs:
transforms_configs["n_poisson_samples"] = n_poisson_samples
transforms = get_transforms(
list_transforms=self._configs["data"]["transforms_list"],
transforms_config=transforms_configs,
root=self._configs["data"]["root"],
)
self._loaders[self._phase].dataset.transform = transforms
def render_more_gen_textures(self, n_shapes: int, n_variants: int) -> None:
self._manager.change_rendering_camera_param(
"sample_count", self._sample_count_rendering
)
self._manager.pick_shapes_for_logging(self._loaders, n_shapes)
shapes = self._manager.get_shapes_for_logging(self._phase)
n_shapes_to_render = len(shapes) * n_variants
render_counter = 0
rendering.mega_kernel(state=False)
# Add also GTs for reference
gt_renders = []
for data in shapes:
if "to_padded_mask" in data.keys():
for i in range(data.num_graphs):
gt_renders.append(
self._manager.render(data.get_example(i)).detach().cpu()
)
else:
gt_renders.append(
self._manager.render(data.clone()).detach().cpu()
)
all_renders = [gt_renders]
for _ in range(n_variants):
current_variant_renders = []
for data in shapes:
render_counter += 1
bar_msg = f" ({str(render_counter)}/{str(n_shapes_to_render)})"
data = self._manager.generate(
data, to_01=False, nest_bar=True, bar_msg=bar_msg
)
if "to_padded_mask" in data.keys():
data_r = data.clone()
data_r.grad_x, data_r.grad_y = None, None
for i in range(data_r.num_graphs):
current_variant_renders.append(
self._manager.render(data_r.get_example(i))
.detach()
.cpu()
)
else:
current_variant_renders.append(
self._manager.render(data.clone()).detach().cpu()
)
all_renders.append(current_variant_renders)
rendering.flush_cache()
out_img_dir = os.path.join(
self._output_directory, "renderings_" + self._phase
)
utils.mkdir(out_img_dir)
all_renders_transposed = list(map(list, zip(*all_renders)))
for i, sh_variants in enumerate(all_renders_transposed):
im = torch.cat(sh_variants, dim=-2)
mi.util.write_bitmap(os.path.join(out_img_dir, str(i) + ".png"), im)
def generate_pcltex_for_whole_set(self, run_n: int | None = None):
out_dir = os.path.join(self._output_directory, "generated")
if run_n is not None:
out_dir = out_dir + f"_{str(run_n)}"
utils.mkdir(out_dir)
def _save_pcl_tex(d):
m = utils.load_mesh(
os.path.join(self._configs["data"]["root"], d.raw_path)
)
path = os.path.join(out_dir, d.raw_path.split("/")[1] + ".ply")
if "verts" in d.keys():
verts = d.verts
else:
torch.Tensor(m.vertices)
utils.save_pcltex(
verts,
torch.Tensor(m.faces.T),
d.pos,
d.x,
path,
save_also_mesh=True,
)
for data in tqdm(self._loaders[self._phase], desc="Generating all"):
data = self._manager.generate(data, to_01=False, nest_bar=True)
if "to_padded_mask" in data.keys():
data_r = data.clone()
data_r.grad_x, data_r.grad_y = None, None
for i in range(data_r.num_graphs):
d = data_r.get_example(i)
_save_pcl_tex(d)
else:
_save_pcl_tex(data)
def render_pregenerated_pcltex(
self,
dir_path=None,
run_n=None,
normalise_scale=False,
num_views=1,
):
if dir_path is None and run_n is None:
dir_path = os.path.join(self._output_directory, "generated")
elif run_n is not None:
dir_path = os.path.join(
self._output_directory, f"generated_{run_n}"
)
if num_views > 1:
dir_name = "rendered_all_multiview"
else:
dir_name = "rendered_all"
out_dir = dir_path.replace("generated", dir_name)
utils.mkdir(out_dir)
all_pclt_paths = []
for root, _, files in os.walk(dir_path):
for fn in files:
if fn.endswith(".ply") and "mesh" not in fn:
all_pclt_paths.append(os.path.join(root, fn))
rendering.mega_kernel(state=False)
for pcl_fpath in tqdm(all_pclt_paths, desc="Rendering all"):
mesh_fpath = pcl_fpath.replace(".ply", "_mesh.ply")
data = utils.load_mesh_with_pcltex(pcl_fpath, mesh_fpath)
mi_mesh = rendering.mesh_with_pcltex_to_mitsuba(
data, normalise_scale, twosided=True
)
if num_views == 1:
images = [self._render_single_view(mi_mesh)]
else:
images = self._render_random_views(mi_mesh, num_views)
for i, im in enumerate(images):
f_path = pcl_fpath.replace("generated", dir_name)
f_path = f_path.replace(".ply", f"_{str(i)}.png")
mi.util.write_bitmap(f_path, im)
rendering.flush_cache()
def render_gt(self, num_views=5):
out_dir = os.path.join(self._output_directory, "rendered_gts")
utils.mkdir(out_dir)
def _render_and_save(d):
mi_mesh = rendering.data_original_texture_to_mitsuba(
d, merge_tex=False, twosided=True, normalize_scale=False
)
images = self._render_random_views(mi_mesh, num_views)
for i, im in enumerate(images):
f_path = d.raw_path.split("/")[1] + f"_{str(i)}.png"
f_path = os.path.join(out_dir, f_path)
mi.util.write_bitmap(f_path, im)
for data in tqdm(self._loaders[self._phase], desc="Rendering GTs"):
if "to_padded_mask" in data.keys():
for i in range(data.num_graphs):
d = data.get_example(i)
_render_and_save(d)
else:
_render_and_save(data)
def _render_random_views(self, mi_mesh, view_num=5, denoise=False):
camera_config = self._configs["rendering"]["camera"]
rend_config = self._configs["rendering"]
scene_dict = {
"type": "scene",
"integrator": rendering.define_integrator(),
"emitter": rendering.define_emitter(
rend_config["emitter"]["envmap_path"]
),
"mesh": mi_mesh,
}
scene = mi.load_dict(scene_dict)
if denoise:
denoiser = mi.OptixDenoiser(
input_size=[
camera_config["img_width"],
camera_config["img_height"],
]
)
azimuth_angles = np.random.rand(view_num) * 360
elevation_angles = np.random.rand(view_num) * 60
images = []
for azimuth, elevation in zip(azimuth_angles, elevation_angles):
camera = mi.load_dict(
rendering.define_camera(
camera_config["distance"],
azimuth,
elevation,
camera_config["camera_type"],
camera_config["img_width"],
camera_config["img_height"],
camera_config["sampler_type"],
self._sample_count_rendering,
camera_config["fov"],
)
)
with drjit.suspend_grad():
img = mi.render(scene, sensor=camera)
if denoise:
img = denoiser(img)
images.append(torch.Tensor(img))
return images
def _render_single_view(self, mi_mesh, denoise=False):
camera_config = self._configs["rendering"]["camera"]
rend_config = self._configs["rendering"]
scene_dict = {
"type": "scene",
"integrator": rendering.define_integrator(),
"emitter": rendering.define_emitter(
rend_config["emitter"]["envmap_path"]
),
"mesh": mi_mesh,
}
scene = mi.load_dict(scene_dict)
camera = mi.load_dict(
rendering.define_camera(
camera_config["distance"],
camera_config["azimuth_deg"],
camera_config["elevation_deg"],
camera_config["camera_type"],
camera_config["img_width"],
camera_config["img_height"],
camera_config["sampler_type"],
self._sample_count_rendering,
camera_config["fov"],
)
)
with drjit.suspend_grad():
image = torch.Tensor(mi.render(scene, sensor=camera))
if denoise:
denoiser = mi.OptixDenoiser(
input_size=[
camera_config["img_width"],
camera_config["img_height"],
]
)
image = denoiser(image)
return image
def compute_fid_and_kid(self, gt_img_save_dir, gen_img_save_dir, id):
score_fid = fid.compute_fid(gt_img_save_dir, gen_img_save_dir)
score_kid = fid.compute_kid(gt_img_save_dir, gen_img_save_dir)
print(f"FID Score: {score_fid}, KID Score: {score_kid}")
# Save the scores in a file
fname = f"scores_{id}.txt"
with open(os.path.join(self._output_directory, fname), "w") as f:
f.write(f"FID Score: {score_fid}\n")
f.write(f"KID Score: {score_kid}\n")
def parse_lpips_files_and_save_average(self, lst_files):
"""
Lpips can be used launching a simple script from the LPIPS library.
Instructions are provided in the README.md file.
"""
all_lpips = []
for f in lst_files:
with open(f, "r") as fp:
lines = fp.readlines()
for line in lines:
line = line.strip()
number = float(line.split(":")[1].strip())
all_lpips.append(number)
average_lpips = sum(all_lpips) / len(all_lpips)
with open(
os.path.join(os.path.dirname(lst_files[0]), "average_lpips.txt"),
"w",
) as f:
f.write(f"Average LPIPS: {average_lpips}")
def print_net_parameter_stats(self, param_name: str = "out_weight"):
for name, param in self._manager.named_parameters():
if param.requires_grad and param_name in name:
mean = utils.truncate(
param.data.mean().cpu().numpy(), decimals=3
)
std = utils.truncate(param.data.std().cpu().numpy(), decimals=3)
print(f"{name} = {mean} +- {std}")
def render_learned_heat_diffusion_times(
self, param_name: str = "diffusion", n_heat_sources: int = 5
):
self._manager.change_rendering_camera_param(
"sample_count", self._sample_count_rendering
)
self._manager.pick_shapes_for_logging(
self._loaders, self._loaders[self._phase].batch_size
)
batch = self._manager.get_shapes_for_logging(self._phase)[0]
assert "to_padded_mask" in batch.keys() # they are really batched
def _heat_diffusion(d, t):
x_spec = utils.to_basis(d.x, d.evecs, d.massvec)
diffusion_coefs = torch.exp(-d.evals.unsqueeze(-1) * t.unsqueeze(0))
x_diffuse_spec = diffusion_coefs * x_spec
return utils.from_basis(x_diffuse_spec, d.evecs)
out_img_dir = os.path.join(
self._output_directory, "renderings_learned_heat_diffusions"
)
utils.mkdir(out_img_dir)
base_color = utils.get_rgb_color("lightgrey")
base_color = base_color.to(self._device)
rendering.mega_kernel(state=False)
all_renderings = defaultdict(list)
for i in range(batch.num_graphs):
data = batch.get_example(i)
data.evals = batch.evals[i, :]
# select n_heat_sources farthest samples
mask = utils.farthest_point_sampling(data.pos, n_heat_sources)
indices = torch.argwhere(mask).squeeze()
# sampled_points = data.pos[mask, :]
for layer_name, param in self._manager.named_parameters():
if param.requires_grad and param_name in layer_name:
renders = []
ts = [
# param.data.min(),
param.data.mean(),
# param.data.max(),
]
for t in ts:
end_colors_iterator = utils.get_color_iterator()
combined_map = torch.zeros_like(
data.x, device=self._device, requires_grad=False
)
# diffuse all point sources separately so that they can
# be assigned a different colour.
for i in indices:
d = data.clone().to(self._device)
d.x = torch.zeros_like(data.x, device=self._device)
d.x = d.x[:, 0:1]
d.x[i, :] = 1.0
diffused = _heat_diffusion(d, t)
cmap = ["lightgrey", next(end_colors_iterator)]
single_source_map = utils.values_to_cmap(
diffused, cmap, None, None
).squeeze()
# remove base colour from everywhere and add it back
# after combining all diffused source maps
combined_map += single_source_map - base_color
combined_map += base_color
# will go back to [0,1] in rendering
d.x = (combined_map - 0.5) * 2
renders.append(self._manager.render(d).detach().cpu())
all_renderings[layer_name].append(
torch.cat(renders, dim=-2)
)
rendering.flush_cache()
for name, list_rends in all_renderings.items():
name = name.replace(".", "_")
im = torch.cat(list_rends, dim=-3)
mi.util.write_bitmap(os.path.join(out_img_dir, name + ".png"), im)
if __name__ == "__main__":
import os
import argparse
import torch
import utils
from data_loading import get_all_data_loaders
from model_manager import ModelManager
parser = argparse.ArgumentParser()
parser.add_argument("--id", type=str, default="026", help="experiment ID")
parser.add_argument("--output_path", type=str, default="./outputs")
parser.add_argument("--processed_dir_name", type=str, default="processed")
parser.add_argument("--batch_size", type=int)
parsed = parser.parse_args()
experiment_name = parsed.id
output_directory = os.path.join(parsed.output_path, experiment_name)
checkpoint_directory = os.path.join(output_directory, "checkpoints")
config = utils.get_config(os.path.join(output_directory, "config.yaml"))
data_config = config["data"]
# Use GPU if available
if not torch.cuda.is_available():
device = torch.device("cpu")
print("GPU not available, running on CPU")
else:
device = torch.device("cuda")
if parsed.batch_size is not None:
data_config["batch_size"] = parsed.batch_size
pre_transform = get_transforms(
list_transforms=data_config["pre_transforms_list"],
transforms_config=data_config["transforms_config"],
root=data_config["root"],
)
transform = get_transforms(
list_transforms=data_config["transforms_list"],
transforms_config=data_config["transforms_config"],
root=data_config["root"],
)
try:
custom_eval_list_path = os.path.join(
data_config["root"], parsed.processed_dir_name, "custom_eval.txt"
)
with open(custom_eval_list_path, "r") as f:
custom_eval_list = f.readlines()
custom_eval_list = [fn.strip() for fn in custom_eval_list]
except FileNotFoundError:
custom_eval_list = None
loaders = get_all_data_loaders(
data_config,
transform,
pre_transform,
None,
parsed.processed_dir_name,
list_of_files_to_use=custom_eval_list,
)
model_manager = ModelManager(config, len_train_loader=len(loaders["train"]))
model_manager = model_manager.to(device)
model_manager.resume(checkpoint_directory)
# TODO: change to test on final model
tester = ModelTester(
model_manager, loaders, config, device, output_directory, phase="test"
)
tester()
# tester.change_sampling_density(n_poisson_samples=30_000)
# tester.render_learned_heat_diffusion_times(
# param_name="diffusion", n_heat_sources=8
# )
# tester.print_net_parameter_stats(param_name="out_weight")
# tester.print_net_parameter_stats(param_name="diffusion_time")
# tester.print_net_parameter_stats(param_name="diffusion_in_time")
# tester.print_net_parameter_stats(param_name="diffusion_out_time")
# tester.change_sampling_density(n_poisson_samples=5_000)
# tester.render_more_gen_textures(n_shapes=6, n_variants=3)