|
| 1 | +import matplotlib |
| 2 | +matplotlib.use('Agg') |
| 3 | +import matplotlib.pyplot as plt |
| 4 | + |
| 5 | +import argparse |
| 6 | +import numpy as np |
| 7 | +from sodetlib.det_config import DetConfig |
| 8 | +from sodetlib.util import cprint, make_filename, get_tracking_kwargs |
| 9 | +from pysmurf.client.util.pub import set_action |
| 10 | + |
| 11 | + |
| 12 | +@set_action() |
| 13 | +def get_tracking_goodness(S, cfg, band, tracking_kwargs=None, |
| 14 | + make_channel_plots=False, r_thresh=0.9): |
| 15 | + """ |
| 16 | + Runs tracking setup and returns how good at tracking each channel is |
| 17 | +
|
| 18 | + Args |
| 19 | + ----- |
| 20 | + S : SmurfControl |
| 21 | + Pysmurf control object |
| 22 | + cfg : DetConfig |
| 23 | + Detconfig object |
| 24 | + band : int |
| 25 | + band number |
| 26 | + tracking_kwargs : dict |
| 27 | + Dictionary of additional custom args to pass to tracking setup |
| 28 | + r_thresh : float |
| 29 | + Threshold used to set color on plots |
| 30 | + Returns |
| 31 | + -------- |
| 32 | + rs : np.ndarray |
| 33 | + Array of size (512) containing values between 0 and 1 which tells |
| 34 | + you how good a channel is at tracking. If close to 1, the channel |
| 35 | + is tracking well and if close to 0 the channel is tracking poorly |
| 36 | + f : np.ndarray |
| 37 | + f as returned from tracking setup |
| 38 | + df : np.ndarray |
| 39 | + df as returned by tracking setup |
| 40 | + """ |
| 41 | + band_cfg = cfg.dev.bands[band] |
| 42 | + tk = get_tracking_kwargs(S, cfg, band, kwargs=tracking_kwargs) |
| 43 | + tk['nsamp'] = 2**20 # moreee data |
| 44 | + tk['show_plot'] = False # Override |
| 45 | + |
| 46 | + f, df, sync = S.tracking_setup(band, **tk) |
| 47 | + si = S.make_sync_flag(sync) |
| 48 | + nphi0 = int(round(band_cfg['lms_freq_hz'] / S.get_flux_ramp_freq()/1000)) |
| 49 | + |
| 50 | + active_chans = np.zeros_like(f[0], dtype=bool) |
| 51 | + active_chans[S.which_on(band)] = True |
| 52 | + |
| 53 | + # Average cycles to get single period estimate |
| 54 | + seg_size = (si[1] - si[0]) // nphi0 |
| 55 | + fstack = np.zeros((seg_size, len(f[0]))) |
| 56 | + nstacks = (len(si)-1) * nphi0 |
| 57 | + for i in range(len(si) - 1): |
| 58 | + s = si[i] |
| 59 | + for j in range(nphi0): |
| 60 | + a = s + seg_size * j |
| 61 | + fstack += f[a:a + seg_size, :] |
| 62 | + fstack /= nstacks |
| 63 | + |
| 64 | + # calculates quality of estimate wrt real data |
| 65 | + y_real = f[si[0]:si[-1], :] |
| 66 | + # Averaged cycle repeated nstack times |
| 67 | + y_est = np.vstack([fstack for _ in range(nstacks)]) |
| 68 | + sstot = np.sum((y_real - np.mean(y_real, axis=0))**2, axis=0) |
| 69 | + ssres = np.sum((y_real - y_est)**2, axis=0) |
| 70 | + |
| 71 | + r = 1 - ssres/sstot |
| 72 | + # Probably means it's a bugged debug channels. |
| 73 | + r[np.isnan(r) & active_chans] = 1 |
| 74 | + |
| 75 | + fname = make_filename(S, 'tracking_goodness.png', plot=True) |
| 76 | + fig, ax = plt.subplots() |
| 77 | + ax.hist(r[active_chans], bins=30) |
| 78 | + ax.axvline(r_thresh, linestyle=':', alpha=0.8) |
| 79 | + text_props = { |
| 80 | + 'transform': ax.transAxes, 'fontsize': 11, 'verticalalignment': 'top', |
| 81 | + 'bbox': {'facecolor': 'white'} |
| 82 | + } |
| 83 | + props = {'facecolor': 'white'} |
| 84 | + num_good = np.sum(r > r_thresh) |
| 85 | + num_active = np.sum(active_chans) |
| 86 | + s = f"{num_good}/{num_active} Channels above r={r_thresh}" |
| 87 | + ax.text(0.05, 0.95, s, **text_props) |
| 88 | + ax.set(xlabel="Tracking Quality", ylabel="Num Channels", |
| 89 | + title=f"Band {b} Tracking Quality") |
| 90 | + plt.savefig(fname) |
| 91 | + S.pub.register_file(fname, 'tracking_goodness', plot=True) |
| 92 | + |
| 93 | + if make_channel_plots: |
| 94 | + print("Making channel plots....") |
| 95 | + nramps = 2 |
| 96 | + xs = np.arange(len(f)) |
| 97 | + m = (si[1] - 20 < xs) & (xs < si[1 + nramps] + 20) |
| 98 | + for chan in S.which_on(band): |
| 99 | + fig, ax = plt.subplots() |
| 100 | + c = 'C1' if r[chan] > 0.85 else 'black' |
| 101 | + ax.plot(xs[m], f[m, chan], color=c) |
| 102 | + props = {'facecolor': 'white'} |
| 103 | + ax.text(0.05, 0.95, f"r={r[chan]:.3f}", transform=ax.transAxes, |
| 104 | + fontsize=15, verticalalignment="top", bbox=props) |
| 105 | + ax.set_title(f"Band {b} Channel {chan}") |
| 106 | + fname = make_filename(S, f"tracking_b{b}_c{chan}.png", plot=True) |
| 107 | + fig.savefig(fname) |
| 108 | + plt.close(fig) |
| 109 | + |
| 110 | + return r, f, df, sync |
| 111 | + |
| 112 | + |
| 113 | +if __name__ == '__main__': |
| 114 | + cfg = DetConfig() |
| 115 | + parser = argparse.ArgumentParser() |
| 116 | + parser.add_argument('--bands', '-b', type=int, nargs='+', required=True) |
| 117 | + parser.add_argument('--threshold', '-t', type=float, default=0.9) |
| 118 | + parser.add_argument('--plots', '-p', action='store_true') |
| 119 | + args = cfg.parse_args(parser) |
| 120 | + S = cfg.get_smurf_control(dump_configs=True) |
| 121 | + |
| 122 | + for b in args.bands: |
| 123 | + rs, f, df, sync = get_tracking_goodness(S, cfg, b, |
| 124 | + make_channel_plots=args.plots, |
| 125 | + r_thresh=args.threshold) |
| 126 | + nchans = len(S.which_on(b)) |
| 127 | + good_chans = np.where(rs > args.threshold)[0] |
| 128 | + cprint(f"{len(good_chans)} / {nchans} have passed on band {b}", |
| 129 | + True) |
| 130 | + cprint(f"Good chans:\n{good_chans}", True) |
0 commit comments