|
| 1 | +''' |
| 2 | +code is adjusted from the Wang et al 2025 "Foundation model of neural activity predicts response to new stimulus types" implementation |
| 3 | +Specifically |
| 4 | +* https://github.com/cajal/fnn/blob/main/fnn/model/pixels.py |
| 5 | +* https://github.com/cajal/fnn/blob/main/fnn/model/perspectives.py |
| 6 | +''' |
| 7 | +import torch |
| 8 | +from torch import nn |
| 9 | + |
| 10 | +def angles_to_rmat3d(angles): |
| 11 | + """ |
| 12 | + Convert batches of Euler angles (x, y, z) to 3D rotation matrices. |
| 13 | +
|
| 14 | + Args: |
| 15 | + angles (torch.Tensor): Tensor of shape (N, 3), angles in radians. |
| 16 | +
|
| 17 | + Returns: |
| 18 | + torch.Tensor: Tensor of shape (N, 3, 3), rotation matrices (Rz * Ry * Rx). |
| 19 | + """ |
| 20 | + x, y, z = torch.unbind(angles, axis=-1) |
| 21 | + N = len(x) |
| 22 | + |
| 23 | + A = torch.eye(3, device=x.device).repeat(N, 1, 1) |
| 24 | + B = torch.eye(3, device=x.device).repeat(N, 1, 1) |
| 25 | + C = torch.eye(3, device=x.device).repeat(N, 1, 1) |
| 26 | + |
| 27 | + cos_z = torch.cos(z) |
| 28 | + sin_z = torch.sin(z) |
| 29 | + |
| 30 | + A[:, 0, 0] = cos_z |
| 31 | + A[:, 0, 1] = -sin_z |
| 32 | + A[:, 1, 0] = sin_z |
| 33 | + A[:, 1, 1] = cos_z |
| 34 | + |
| 35 | + cos_y = torch.cos(y) |
| 36 | + sin_y = torch.sin(y) |
| 37 | + |
| 38 | + B[:, 0, 0] = cos_y |
| 39 | + B[:, 0, 2] = sin_y |
| 40 | + B[:, 2, 0] = -sin_y |
| 41 | + B[:, 2, 2] = cos_y |
| 42 | + |
| 43 | + cos_x = torch.cos(x) |
| 44 | + sin_x = torch.sin(x) |
| 45 | + |
| 46 | + C[:, 1, 1] = cos_x |
| 47 | + C[:, 1, 2] = -sin_x |
| 48 | + C[:, 2, 1] = sin_x |
| 49 | + C[:, 2, 2] = cos_x |
| 50 | + |
| 51 | + return A @ B @ C |
| 52 | + |
| 53 | + |
| 54 | +class PixelTransform(nn.Module): |
| 55 | + """ |
| 56 | + Nonlinear pixel intensity transform with learnable power, scale, and offset. |
| 57 | + """ |
| 58 | + def __init__(self, max_power=1, init_scale=1, init_offset=0, eps=1e-5): |
| 59 | + super().__init__() |
| 60 | + |
| 61 | + self.max_power = max_power |
| 62 | + self.eps = eps |
| 63 | + |
| 64 | + self.logit = nn.Parameter(torch.zeros(1)) |
| 65 | + self.scale = nn.Parameter(torch.full([1], init_scale, dtype=torch.float32)) |
| 66 | + self.offset = nn.Parameter(torch.full([1], init_offset, dtype=torch.float32)) |
| 67 | + |
| 68 | + @property |
| 69 | + def power(self): |
| 70 | + return self.logit.sigmoid() * self.max_power |
| 71 | + |
| 72 | + def forward(self, pixels): |
| 73 | + return pixels.add(self.eps).pow(self.power).mul(self.scale).add(self.offset) |
| 74 | + |
| 75 | + |
| 76 | +class Retina(nn.Module): |
| 77 | + """ |
| 78 | + Models a retina that maps pupil centers to 3D rays via an MLP. |
| 79 | +
|
| 80 | + Args: |
| 81 | + degree (float): Field of view in degrees. |
| 82 | + height, width (int): Retina grid resolution. |
| 83 | + dim_in, dim_out (int): Input/output dimensions for MLP. |
| 84 | + mlp_features (int): Hidden feature size. |
| 85 | + mlp_layers (int): Number of MLP layers. |
| 86 | + max_angle (float): Maximum rotation angle in degrees. |
| 87 | + """ |
| 88 | + def __init__( |
| 89 | + self, |
| 90 | + degree=50, |
| 91 | + height=36, |
| 92 | + width=64, |
| 93 | + dim_in=2, |
| 94 | + dim_out=2, |
| 95 | + mlp_features=16, |
| 96 | + mlp_layers=3, |
| 97 | + max_angle=30, |
| 98 | + ): |
| 99 | + super().__init__() |
| 100 | + |
| 101 | + grid = self.create_grid(height, width, degree) |
| 102 | + self.register_buffer("grid", grid) |
| 103 | + self.max_angle = max_angle / torch.pi * 180 |
| 104 | + |
| 105 | + layers = [] |
| 106 | + |
| 107 | + features = [dim_in] + [mlp_features] * mlp_layers + [dim_out] |
| 108 | + non_linearities = [nn.GELU()] * mlp_layers + [None] |
| 109 | + |
| 110 | + for in_features, out_features, nonlinear in zip(features[:-1], features[1:], non_linearities): |
| 111 | + linear = nn.Linear(in_features, out_features) |
| 112 | + linear = nn.utils.parametrizations.weight_norm(linear) |
| 113 | + nn.init.zeros_(linear.bias) |
| 114 | + layers.append(linear) |
| 115 | + |
| 116 | + if nonlinear is not None: |
| 117 | + layers.append(nonlinear) |
| 118 | + |
| 119 | + self.mlp = nn.Sequential(*layers) |
| 120 | + |
| 121 | + def create_grid(self, height, width, degree): |
| 122 | + # Create isotropic grid of retina |
| 123 | + x_axis = torch.linspace(-1, 1, width) |
| 124 | + y_axis = torch.linspace(-1, 1, height) * height / width |
| 125 | + scale = (width - 1) / width |
| 126 | + |
| 127 | + x, y = torch.meshgrid( |
| 128 | + x_axis * scale, |
| 129 | + y_axis * scale, |
| 130 | + indexing="xy", |
| 131 | + ) |
| 132 | + |
| 133 | + # Convert to grid of 3D rays corresponding to retina pixels |
| 134 | + radians = degree / 180 * torch.pi |
| 135 | + |
| 136 | + r = torch.sqrt(x.pow(2) + y.pow(2)).mul(radians).clip(0, torch.pi / 2) |
| 137 | + cos_r = torch.cos(r) |
| 138 | + sin_r = torch.sin(r) |
| 139 | + |
| 140 | + theta = torch.atan2(y, x) |
| 141 | + cos_theta = torch.cos(theta) |
| 142 | + sin_theta = torch.sin(theta) |
| 143 | + |
| 144 | + ray_grid = [ |
| 145 | + sin_r * cos_theta, |
| 146 | + sin_r * sin_theta, |
| 147 | + cos_r, |
| 148 | + ] |
| 149 | + |
| 150 | + return torch.stack(ray_grid, dim=-1) |
| 151 | + |
| 152 | + def rotate_retina(self, rmat): |
| 153 | + return torch.einsum("N C D , H W D -> N H W C", rmat, self.grid) |
| 154 | + |
| 155 | + # Take pupil center to return rotated grid of retina rays |
| 156 | + def rays(self, pupil_center): |
| 157 | + angles = self.mlp(pupil_center) |
| 158 | + angles = torch.clip(angles, -self.max_angle, self.max_angle) |
| 159 | + |
| 160 | + pad_zeros = torch.zeros((angles.shape[0], 1), device=angles.device) |
| 161 | + angles = torch.concat([angles, pad_zeros], axis=1) |
| 162 | + |
| 163 | + rmat = angles_to_rmat3d(angles) |
| 164 | + rays = self.rotate_retina(rmat) |
| 165 | + |
| 166 | + return rays |
| 167 | + |
| 168 | + |
| 169 | +class Monitor(nn.Module): |
| 170 | + """ |
| 171 | + Models a monitor in 3D space with optimizable position and orientation. |
| 172 | +
|
| 173 | + Provides projection of retinal rays onto the monitor plane and sampling of images. |
| 174 | + """ |
| 175 | + def __init__( |
| 176 | + self, |
| 177 | + init_center_x=0, |
| 178 | + init_center_y=0, |
| 179 | + init_center_z=0.5, |
| 180 | + init_center_std=0.05, |
| 181 | + init_angle_x=0, |
| 182 | + init_angle_y=0, |
| 183 | + init_angle_z=0, |
| 184 | + init_angle_std=0.05, |
| 185 | + eps=1e-5, |
| 186 | + ): |
| 187 | + super().__init__() |
| 188 | + |
| 189 | + center = [ |
| 190 | + init_center_x, |
| 191 | + init_center_y, |
| 192 | + init_center_z, |
| 193 | + ] |
| 194 | + self.center = nn.Parameter(torch.tensor(center, dtype=torch.float32)) |
| 195 | + |
| 196 | + angle = [ |
| 197 | + init_angle_x, |
| 198 | + init_angle_y, |
| 199 | + init_angle_z, |
| 200 | + ] |
| 201 | + self.angle = nn.Parameter(torch.tensor(angle, dtype=torch.float32)) |
| 202 | + |
| 203 | + self.center_std = nn.Parameter(torch.tensor(init_center_std, dtype=torch.float32)) |
| 204 | + self.angle_std = nn.Parameter(torch.tensor(init_angle_std, dtype=torch.float32)) |
| 205 | + self.eps = float(eps) |
| 206 | + |
| 207 | + # Optimize position of monitor |
| 208 | + def position(self, batch_size): |
| 209 | + center = self.center.repeat(batch_size, 1) |
| 210 | + angle = self.angle.repeat(batch_size, 1) |
| 211 | + |
| 212 | + if self.training: |
| 213 | + center = center + torch.randn(batch_size, 3, device=center.device) * self.center_std |
| 214 | + angle = angle + torch.randn(batch_size, 3, device=angle.device) * self.angle_std |
| 215 | + |
| 216 | + x, y, z = angles_to_rmat3d(angle).unbind(2) |
| 217 | + |
| 218 | + return center, x, y, z |
| 219 | + |
| 220 | + # Project rays onto monitor coordinates |
| 221 | + def project(self, rays): |
| 222 | + center, x, y, z = self.position(len(rays)) |
| 223 | + |
| 224 | + a = torch.einsum("N D , N D -> N", z, center)[:, None, None] |
| 225 | + b = torch.einsum("N D , N H W D -> N H W", z, rays).clip(self.eps) |
| 226 | + |
| 227 | + c = torch.einsum("N H W , N H W D -> N H W D", a / b, rays) |
| 228 | + d = c - center[:, None, None, :] |
| 229 | + |
| 230 | + proj = [ |
| 231 | + torch.einsum("N H W D , N D -> N H W", d, x), |
| 232 | + torch.einsum("N H W D , N D -> N H W", d, y), |
| 233 | + ] |
| 234 | + return torch.stack(proj, dim=3) |
| 235 | + |
| 236 | + # Samples values in img at positions given by grid |
| 237 | + def sample_screen(self, img, grid): |
| 238 | + _, _, H_in, W_in = img.shape |
| 239 | + grid_x, grid_y = grid.unbind(dim=3) |
| 240 | + |
| 241 | + grid_y = grid_y * W_in / H_in |
| 242 | + scale = W_in / (W_in - 1) |
| 243 | + |
| 244 | + _, H_out, W_out, _ = grid.shape |
| 245 | + grid = [ |
| 246 | + grid_x * scale * (W_out - 1) / W_out, |
| 247 | + grid_y * scale * (H_out - 1) / H_out, |
| 248 | + ] |
| 249 | + |
| 250 | + return nn.functional.grid_sample( |
| 251 | + input=img, |
| 252 | + grid=torch.stack(grid, dim=3), |
| 253 | + mode="bilinear", |
| 254 | + align_corners=False, |
| 255 | + ) |
| 256 | + |
| 257 | + |
| 258 | +# Combines Retina and Monitor |
| 259 | + |
| 260 | + |
| 261 | +class SinglePerspective(nn.Module): |
| 262 | + """ |
| 263 | + Combines Retina, Monitor, and PixelTransform to generate a single visual perspective. |
| 264 | + """ |
| 265 | + def __init__(self, retina, monitor, pixel_transform, static_power=1.7): |
| 266 | + super().__init__() |
| 267 | + |
| 268 | + self.retina = retina |
| 269 | + self.monitor = monitor |
| 270 | + self.pixel_transform = pixel_transform |
| 271 | + self.static_power = static_power |
| 272 | + |
| 273 | + def forward(self, img, pupil_center): |
| 274 | + rays = self.retina.rays(pupil_center) |
| 275 | + grid = self.monitor.project(rays) |
| 276 | + |
| 277 | + pixels = img |
| 278 | + |
| 279 | + img = (pixels[:, None, 0, :, :] / 255.0).pow(self.static_power) |
| 280 | + behaviour = pixels[:, 1:, :, :] |
| 281 | + pixels = torch.concat([img, behaviour], axis=1) |
| 282 | + |
| 283 | + pixels = self.monitor.sample_screen(pixels, grid) |
| 284 | + |
| 285 | + img = self.pixel_transform(pixels[:, None, 0, :, :]) |
| 286 | + behaviour = pixels[:, 1:, :, :] |
| 287 | + pixels = torch.concat([img, behaviour], axis=1) |
| 288 | + |
| 289 | + return pixels |
| 290 | + |
| 291 | + |
| 292 | +class Perspective(nn.ModuleDict): |
| 293 | + """ |
| 294 | + Container for multiple SinglePerspective modules keyed by dataset identifiers. |
| 295 | + """ |
| 296 | + def __init__(self, data_keys, retina_degree=75, mlp_features=16, mlp_layers=3): |
| 297 | + super().__init__() |
| 298 | + |
| 299 | + for k in data_keys: |
| 300 | + retina = Retina(degree=retina_degree, mlp_features=mlp_features, mlp_layers=mlp_layers) |
| 301 | + monitor = Monitor() |
| 302 | + self.add_module(k, SinglePerspective(retina, monitor, PixelTransform())) |
0 commit comments