@@ -129,7 +129,7 @@ def return_common_neighs(np.ndarray[DTYPE_t, ndim = 1] kstar,
129
129
130
130
cdef DTYPE_t i, j, ind_spar, count, kstar_i, kstar_j, idx, idx2, val_i, val_j
131
131
132
- cdef np.ndarray[DTYPE_t, ndim= 1 ] common_neighs_array = np.zeros(nspar, dtype = np.int_ )
132
+ cdef np.ndarray[DTYPE_t, ndim= 1 ] common_neighs_array = np.zeros(nspar, dtype = DTYPE )
133
133
134
134
for ind_spar in range (nspar):
135
135
i = nind_list[ind_spar, 0 ]
@@ -167,8 +167,8 @@ def return_common_neighs_comp_mat(np.ndarray[DTYPE_t, ndim = 1] kstar,
167
167
168
168
cdef DTYPE_t i, j, ind_spar, count, kstar_i, kstar_j, idx, idx2, val_i, val_j
169
169
170
- cdef np.ndarray[DTYPE_t, ndim= 1 ] common_neighs_array = np.zeros(nspar, dtype = np.int_ )
171
- cdef np.ndarray[DTYPE_t, ndim= 2 ] common_neighs_mat = np.zeros((N,N), dtype = np.int_ )
170
+ cdef np.ndarray[DTYPE_t, ndim= 1 ] common_neighs_array = np.zeros(nspar, dtype = DTYPE )
171
+ cdef np.ndarray[DTYPE_t, ndim= 2 ] common_neighs_mat = np.zeros((N,N), dtype = DTYPE )
172
172
173
173
for ind_spar in range (nspar):
174
174
i = nind_list[ind_spar, 0 ]
@@ -215,7 +215,7 @@ def return_cross_common_neighs( np.ndarray[DTYPE_t, ndim = 1] kstar,
215
215
216
216
cdef DTYPE_t i, j, ind_spar, count, kstar_i, kstar_j, idx, idx2, val_i, val_j
217
217
218
- cdef np.ndarray[DTYPE_t, ndim= 1 ] common_neighs_array = np.zeros(nspar, dtype = np.int_ )
218
+ cdef np.ndarray[DTYPE_t, ndim= 1 ] common_neighs_array = np.zeros(nspar, dtype = DTYPE )
219
219
220
220
for ind_spar in range (nspar):
221
221
i = cross_nind_list[ind_spar, 0 ]
0 commit comments