-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAutoencoder.py
62 lines (46 loc) · 2.36 KB
/
Autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import tensorflow as tf
import numpy as np
import Utils
class Autoencoder(object):
def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus, optimizer = tf.train.AdamOptimizer()):
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
network_weights = self._initialize_weights()
self.weights = network_weights
# model
self.x = tf.placeholder(tf.float32, [None, self.n_input])
self.hidden = self.transfer(tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
self.regularizer=tf.contrib.layers.l2_regularizer(0.001)
# cost
#self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
self.cost = tf.reduce_mean(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))+self.regularizer(self.weights['w1'])
self.optimizer = optimizer.minimize(self.cost)
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
def _initialize_weights(self):
all_weights = dict()
all_weights['w1'] = tf.Variable(Utils.xavier_init(self.n_input, self.n_hidden))
all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
return all_weights
def partial_fit(self, X):
cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
return cost
def calc_total_cost(self, X):
return self.sess.run(self.cost, feed_dict = {self.x: X})
def transform(self, X):
return self.sess.run(self.hidden, feed_dict={self.x: X})
def generate(self, hidden = None):
if hidden is None:
hidden = np.random.normal(size=self.weights["b1"])
return self.sess.run(self.reconstruction, feed_dict={self.hidden: hidden})
def reconstruct(self, X):
return self.sess.run(self.reconstruction, feed_dict={self.x: X})
def getWeights(self):
return self.sess.run(self.weights['w1'])
def getBiases(self):
return self.sess.run(self.weights['b1'])