-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathmain.py
55 lines (51 loc) · 1.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from mlx_lm import load
import mlx.core as mx
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="Qwen/Qwen2-7B-Instruct-MLX")
parser.add_argument(
"--prompt",
type=str,
default="Give me a short introduction to large language model.",
)
parser.add_argument("--solution", type=str, default="tiny_llm")
parser.add_argument("--device", type=str, default="gpu")
args = parser.parse_args()
use_mlx = False
if args.solution == "tiny_llm":
from tiny_llm import Qwen2Model, simple_generate
print("Using your tiny_llm solution")
elif args.solution == "tiny_llm_week1_ref" or args.solution == "week1_ref":
from tiny_llm_week1_ref import Qwen2Model, simple_generate
print("Using tiny_llm_week1_ref solution")
elif args.solution == "tiny_llm_week2_ref" or args.solution == "week2_ref":
from tiny_llm_week2_ref import Qwen2Model, simple_generate
print("Using tiny_llm_week2_ref solution")
elif args.solution == "mlx":
use_mlx = True
from mlx_lm.generate import stream_generate
print("Using the original mlx model")
else:
raise ValueError(f"Solution {args.solution} not supported")
mlx_model, tokenizer = load(
args.model,
tokenizer_config={"eos_token": "<|im_end|>"},
model_config={"tie_word_embeddings": False, "rope_traditional": False},
)
with mx.stream(mx.gpu if args.device == "gpu" else mx.cpu):
if use_mlx:
tiny_llm_model = mlx_model
else:
tiny_llm_model = Qwen2Model(mlx_model)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": args.prompt},
]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
if not use_mlx:
simple_generate(tiny_llm_model, tokenizer, prompt)
else:
for resp in stream_generate(tiny_llm_model, tokenizer, prompt):
print(resp.text, end="", flush=True)