You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+8-8Lines changed: 8 additions & 8 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -10,14 +10,14 @@ With modern high-density electrodes and optical imaging techniques, neuroscienti
10
10
## Labs
11
11
The course is organized around eight coding labs. Each lab develops a minimal implementation of a state-of-the-art method from scratch in a self-contained Google Colab notebook. These are widely used techniques for analyzing neural and behavioral data, and through the labs you'll get a deep understanding of how these methods work under the hood:
2.[Kilosort: Spike sorting by Deconvolution](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_2_Spike_Sorting_with_Deconvolution.ipynb)[[Solutions (upon request)]](https://colab.research.google.com/drive/1ejD-NL-cjdjGS4woCknqZAo4gBG2q8xo?usp=sharing)
15
-
3.[CNMF: Calcium deconvolution via constrained NMF](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_3_Calcium_demixing_and_deconvolution.ipynb)[[Solutions (upon request)]](https://colab.research.google.com/drive/1QiiEr-NnGlsUmgbulRum86_2ZL6pOTPG?usp=sharing)
16
-
4.[DeepLabCut: Markerless pose tracking with CNNs](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_4_Markerless_pose_tracking.ipynb)[[Solutions (upon request)]](https://colab.research.google.com/drive/1j5GcNmPZhjyKioB4mN--N9RspmESXxgb?usp=sharing)
17
-
5.[DeepRetina: Deep encoding models of retinal spike trains](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_5_Encoding_models_of_retinal_ganglion_cells.ipynb)[[Solutions (upon request)]](https://colab.research.google.com/drive/1Pdw-1TiCQuGDUr_mCzMDj9Q1mF7sYRoS?usp=sharing)
18
-
6.[Kalman Smoothers: Decoding movement from neural data](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_6_Decoding_movement_from_motor_cortex_recordings.ipynb)[[Solutions (upon request)]](https://colab.research.google.com/drive/1OE1hKHwuUrnfBkILnFsgIdFCZK0q8viM?usp=sharing)
19
-
7.[MoSeq: Autoregressive HMMs for animal movements](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_7_Autoregressive_Hidden_Markov_Models_of_Behavior.ipynb)[[Solutions (upon request)]](https://colab.research.google.com/drive/1tAlnda5nSR2KdCakRRp7I1fcdBdYEFS1?usp=sharing)
20
-
8.[SLDS: Switching LDS model of neural data](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_8_Latent_Variable_Models,_Variational_EM,_and_Worm_Brains.ipynb)[[Solutions (upon request)]](https://colab.research.google.com/drive/1NORGTLRu9i9fmMQpxeK7--WsPk4y-boD?usp=sharing)
2.[Kilosort: Spike sorting by Deconvolution](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_2_Spike_Sorting_with_Deconvolution.ipynb)
15
+
3.[CNMF: Calcium deconvolution via constrained NMF](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_3_Calcium_demixing_and_deconvolution.ipynb)
16
+
4.[DeepLabCut: Markerless pose tracking with CNNs](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_4_Markerless_pose_tracking.ipynb)
17
+
5.[DeepRetina: Deep encoding models of retinal spike trains](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_5_Encoding_models_of_retinal_ganglion_cells.ipynb)
18
+
6.[Kalman Smoothers: Decoding movement from neural data](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_6_Decoding_movement_from_motor_cortex_recordings.ipynb)
19
+
7.[MoSeq: Autoregressive HMMs for animal movements](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_7_Autoregressive_Hidden_Markov_Models_of_Behavior.ipynb)
20
+
8.[SLDS: Switching LDS model of neural data](https://colab.research.google.com/github/slinderman/stats320/blob/main/labs/Lab_8_Latent_Variable_Models,_Variational_EM,_and_Worm_Brains.ipynb)
21
21
22
22
## Schedule
23
23
The lectures develop the theory behind the methods developed in lab. I've organized the course into three units: signal extraction, encoding and decoding, and unsupervised modeling of neural and behavioral data. At the end, you'll work on a final project in which you will use, explore, or extend the techniques studied in class.
0 commit comments