-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
145 lines (130 loc) · 5.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import argparse
import copy
import statistics
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
class Q_Player:
def __init__(self, max_price, alpha, delta, epsilon, theta):
# the row is the price of opponent and the colum is the one of
# itself
self.Q = np.random.uniform(size = [max_price + 1, max_price + 1])
self.max_price = max_price
# Learning rate
self.alpha = alpha
# Discount rate
self.delta = delta
# decaying rate
self.theta = theta
# Indicate this is a Q model
self.Qmodel = True
# the prob of exploitation
self.epsilon = epsilon
def offer(self, p_oppo_prev):
if np.random.binomial(1, self.epsilon):
self.epsilon = self.epsilon * (1-self.theta)
# Uniform price
# because the random integer is from [l,h), we need to plus one
# here
return np.random.randint(self.max_price + 1)
else:
self.epsilon = self.epsilon * (1-self.theta)
# exploitation
return np.argmax(self.Q[p_oppo_prev])
def updateQ(self, market, p_oppo_past, p_self_curr, p_oppo_react):
self.Q[p_oppo_past][p_self_curr] = \
(1-self.alpha) * self.Q[p_oppo_past][p_self_curr] + \
self.alpha * (market.profit(p_self_curr, p_oppo_past) + \
self.delta * market.profit(p_self_curr, p_oppo_react) + \
(self.delta ** 2) * max(self.Q[p_oppo_react]) )
class Myopic_Player:
def __init__(self):
#indicate this is not a Q model
self.Qmodel = False
def offer(self, p_oppo_prev):
return max(p_oppo_prev - 1, 1)
class market:
def __init__(self, intercept):
self.intercept = intercept
def profit(self, p_self, p_oppo):
if p_self < p_oppo:
return 1. * (self.intercept - p_self) * p_self
elif p_self > p_oppo:
return 0.
else:
return 0.5 * (self.intercept-p_self) * p_self
def similate(player1, player2, market, num_of_runs, periods, max_price):
# First element is for player 1
results = ([], [])
# Price for last period and this period
p_last = np.random.randint(max_price + 1)
p_curr = np.random.randint(max_price + 1)
for i in range(num_of_runs):
results[0].append([])
results[1].append([])
# make copy of players
p1 = copy.deepcopy(player1)
p2 = copy.deepcopy(player2)
for j in range(periods - 1):
# stage of player 1
# In this half, p_last is offered by player 1, and p_curr is offered
# by player 2
offer = p1.offer(p_curr)
profit = market.profit(offer, p_curr)
results[0][i].append({'price':offer, 'profit':profit})
if p2.Qmodel:
p2.updateQ(market, p_last, p_curr, offer)
# update price
p_last = p_curr
p_curr = offer
# Stage of player 2
# Here, p_last is by player 2 and p_curr is by player 1
offer = p2.offer(p_curr)
profit = market.profit(offer, p_curr)
results[1][i].append({'price':offer, 'profit':profit})
if p1.Qmodel:
p1.updateQ(market, p_last, p_curr, offer)
# update price
p_last = p_curr
p_curr = offer
return results
def averagmatrix(results):
ave = []
for i in range(len(results[0])):
ave.append({'price':statistics.mean([results[j][i]['price'] for j in \
range(len(results))]),
'profit':statistics.mean([results[j][i]['profit'] for j in \
range(len(results))])})
return ave
def main():
parser = argparse.ArgumentParser(description='replicate Klein 2018')
parser.add_argument('--num-of-runs', type = int, default = 10, metavar = 'N',
help = 'number of the simulations (default: 100)')
parser.add_argument('--periods', type = int, default = 1000, metavar = 'N',
help = 'how may times the players offer price each (default: 100)')
parser.add_argument('--max-price', type = int, default = 12, metavar = 'N',
help = 'the largest possible price (default: 12)')
parser.add_argument('--theta', type = float, default = 0.001, metavar =
'f', help = 'the decaying rate of exploration \
probability (default: 0.001)' )
parser.add_argument('--delta', type = float, default = 0.9, metavar = 'f',
help = 'discouting rate (decault: 0.9)')
parser.add_argument('--epsilon0', type = float, default = 1.0, metavar =
'f', help = 'initial exploration probability \
(default :1)')
parser.add_argument('--alpha', type = float, default = 0.9, metavar = 'f',
help = 'learning rate in the Q-learning')
args = parser.parse_args()
# define market. Assume the intercept equals the max price
mkt = market(args.max_price)
# define players
p1 = Q_Player(args.max_price, args.alpha, args.delta, args.epsilon0, args.theta)
p2 = Myopic_Player()
results = similate(p1, p2, mkt, args.num_of_runs, args.periods, args.max_price)
averesults = averagmatrix(results[0])
plt.plot([l['profit'] for l in averesults])
plt.savefig("./result.png")
#plt.show()
if __name__ == '__main__':
main()