Skip to content

Commit 15ebf37

Browse files
committed
update data generation
1 parent 9c56201 commit 15ebf37

File tree

3 files changed

+175
-1
lines changed

3 files changed

+175
-1
lines changed

data/d_zibb_4.RData

1.16 KB
Binary file not shown.

inst/scripts/d_zibb_4.R

+174
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,174 @@
1+
set.seed(seed = 12345)
2+
require(rstan)
3+
4+
# Stan generative model
5+
sim_stan <- "
6+
functions {
7+
int zibb_rng(int y, int n, real mu, real phi, real kappa) {
8+
if (bernoulli_rng(kappa) == 1) {
9+
return (0);
10+
} else {
11+
return (beta_binomial_rng(n, mu * phi, (1 - mu) * phi));
12+
}
13+
}
14+
}
15+
16+
data {
17+
int<lower=0> N_sample; // number of repertoires
18+
int<lower=0> N_gene; // gene
19+
int<lower=0> N_individual; // number of individuals
20+
int<lower=0> N_condition; // number of conditions
21+
array [N_sample] int N; // repertoire size
22+
array [N_individual] int condition_id; // id of conditions
23+
array [N_sample] int individual_id; // id of replicate
24+
vector [N_gene] alpha;
25+
real <lower=0> phi;
26+
real <lower=0, upper=1> kappa;
27+
array [N_condition] vector [N_gene] beta_condition;
28+
vector <lower=0> [N_condition] sigma_condition;
29+
vector <lower=0> [N_condition] sigma_individual;
30+
real <lower=0> sigma_replicate;
31+
}
32+
33+
generated quantities {
34+
array [N_sample] vector <lower=0, upper=1> [N_gene] theta;
35+
array [N_sample] vector [N_gene] beta_sample;
36+
array [N_individual] vector [N_gene] beta_individual;
37+
38+
// generate usage
39+
array [N_gene, N_sample] int Y;
40+
41+
for(i in 1:N_individual) {
42+
for(j in 1:N_gene) {
43+
beta_individual[i][j] = normal_rng(beta_condition[condition_id[i]][j], sigma_individual[condition_id[i]]);
44+
}
45+
}
46+
47+
for(i in 1:N_sample) {
48+
for(j in 1:N_gene) {
49+
beta_sample[i][j] = normal_rng(beta_individual[individual_id[i]][j], sigma_replicate);
50+
theta[i][j] = inv_logit(alpha[j] + beta_sample[i][j]);
51+
Y[j, i] = zibb_rng(Y[j, i], N[i], theta[i][j], phi, kappa);
52+
}
53+
}
54+
}
55+
"
56+
57+
# compile model
58+
m <- rstan::stan_model(model_code = sim_stan)
59+
60+
61+
62+
# int<lower=0> N_sample; // number of repertoires
63+
# int<lower=0> N_gene; // gene
64+
# int<lower=0> N_individual; // number of individuals
65+
# int<lower=0> N_condition; // number of conditions
66+
# array [N_sample] int N; // repertoire size
67+
# array [N_individual] int condition_id; // id of conditions
68+
# array [N_sample] int individual_id; // id of replicate
69+
# vector [N_gene] alpha;
70+
# real <lower=0> phi;
71+
# real <lower=0, upper=1> kappa;
72+
# array [N_condition] vector [N_gene] beta_condition;
73+
# vector <lower=0> [N_condition] sigma_condition;
74+
# vector <lower=0> [N_condition] sigma_individual;
75+
# real <lower=0> sigma_replicate;
76+
77+
# generate data based on the following parameters parameters
78+
set.seed(1005001)
79+
N_gene <- 15
80+
N_replicates <- 3
81+
N_individual <- 9
82+
N_condition <- 3
83+
N_sample <- N_individual * N_replicates
84+
85+
condition_id <- rep(x = 1:N_condition, each = N_individual/N_condition)
86+
87+
N <- rep(x = 1000, times = N_sample)
88+
89+
individual_id <- rep(x = 1:N_individual, each = N_replicates)
90+
91+
alpha <- rnorm(n = N_gene, mean = -5, sd = 3)
92+
93+
phi <- 200
94+
95+
kappa <- 0.02
96+
97+
beta_condition <- array(data = 0, dim = c(N_condition, N_gene))
98+
for(c in 1:N_condition) {
99+
for(g in 1:N_gene) {
100+
u <- runif(n = 1, min = 0, max = 1)
101+
if(u <= 0.95) {
102+
beta_condition[c,g] <- rnorm(n = 1, mean = 0, sd = 0.5)
103+
} else {
104+
beta_condition[c,g] <- rnorm(n = 1, mean = 0, sd = 5)
105+
}
106+
}
107+
}
108+
109+
sigma_condition <- rep(x = 1, times = N_condition)
110+
sigma_individual <- rep(x = 0.5, times = N_condition)
111+
sigma_replicate <- 0.1
112+
113+
114+
l <- list(N_sample = N_sample,
115+
N_gene = N_gene,
116+
N_individual = N_individual,
117+
N_condition = N_condition,
118+
N = N,
119+
condition_id = condition_id,
120+
individual_id = individual_id,
121+
alpha = alpha,
122+
phi = phi,
123+
kappa = kappa,
124+
beta_condition = beta_condition,
125+
sigma_condition = sigma_condition,
126+
sigma_individual = sigma_individual,
127+
sigma_replicate = sigma_replicate)
128+
129+
# simulate
130+
sim <- rstan::sampling(object = m,
131+
data = l,
132+
iter = 1,
133+
chains = 1,
134+
algorithm="Fixed_param")
135+
136+
# extract simulation and convert into data frame which can
137+
# be used as input of IgGeneUsage
138+
ysim <- rstan::extract(object = sim, par = "Y")$Y
139+
ysim <- ysim[1,,]
140+
141+
ysim_df <- reshape2::melt(ysim)
142+
colnames(ysim_df) <- c("gene_name", "sample_id", "gene_usage_count")
143+
144+
m <- data.frame(sample_id = 1:l$N_sample,
145+
individual_id = l$individual_id)
146+
147+
ysim_df <- merge(x = ysim_df, y = m, by = "sample_id", all.x = T)
148+
149+
m <- data.frame(individual_id = 1:l$N_individual,
150+
condition_id = l$condition_id)
151+
152+
ysim_df <- merge(x = ysim_df, y = m, by = "individual_id", all.x = T)
153+
154+
155+
ysim_df$condition <- paste0("C_", ysim_df$condition_id)
156+
ysim_df$gene_name <- paste0("G_", ysim_df$gene_name)
157+
ysim_df$individual_id <- paste0("I_", ysim_df$individual_id)
158+
159+
ysim_df$replicate <- rep(rep(x = c("R_1", "R_2", "R_3"), each = 15), times = 9)
160+
ysim_df$condition_id <- NULL
161+
ysim_df$sample_id <- NULL
162+
ysim_df <- ysim_df[, c("individual_id", "condition", "gene_name",
163+
"replicate", "gene_usage_count")]
164+
165+
d_zibb_4 <- ysim_df
166+
167+
# save
168+
save(d_zibb_4, file = "data/d_zibb_4.RData", compress = T)
169+
170+
171+
# ggplot(data = d_zibb_4)+
172+
# geom_sina(aes(x = gene_name, y = gene_usage_count, col = condition))+
173+
# theme_bw(base_size = 10)+
174+
# theme(legend.position = "none")

vignettes/User_Manual.Rmd

+1-1
Original file line numberDiff line numberDiff line change
@@ -543,7 +543,7 @@ g2 <- ggplot(data = stats)+
543543
```
544544

545545

546-
```{r, fig.weight = 5, fig.height = 6}
546+
```{r, fig.height = 6, fig.width = 7}
547547
(g1/g2)
548548
```
549549

0 commit comments

Comments
 (0)