|
| 1 | +functions { |
| 2 | + real zibb_lpmf(int y, int n, real mu, real phi, real kappa) { |
| 3 | + if (y == 0) { |
| 4 | + return log_sum_exp(bernoulli_lpmf(1 | kappa), |
| 5 | + bernoulli_lpmf(0 | kappa) + |
| 6 | + beta_binomial_lpmf(0 | n, mu * phi, (1 - mu) * phi)); |
| 7 | + } else { |
| 8 | + return bernoulli_lpmf(0 | kappa) + |
| 9 | + beta_binomial_lpmf(y | n, mu * phi, (1 - mu) * phi); |
| 10 | + } |
| 11 | + } |
| 12 | + |
| 13 | + int zibb_rng(int y, int n, real mu, real phi, real kappa) { |
| 14 | + if (bernoulli_rng(kappa) == 1) { |
| 15 | + return (0); |
| 16 | + } else { |
| 17 | + return (beta_binomial_rng(n, mu * phi, (1 - mu) * phi)); |
| 18 | + } |
| 19 | + } |
| 20 | + |
| 21 | + real z_rng(real a, real b, real zi) { |
| 22 | + if (bernoulli_rng(zi) == 1) { |
| 23 | + return (0); |
| 24 | + } else { |
| 25 | + return(inv_logit(a+b)); |
| 26 | + } |
| 27 | + } |
| 28 | +} |
| 29 | + |
| 30 | +data { |
| 31 | + int<lower=0> N_sample; // number of repertoires |
| 32 | + int<lower=0> N_gene; // gene |
| 33 | + int<lower=0> N_individual; // number of individuals |
| 34 | + int<lower=0> N_condition; // number of conditions |
| 35 | + int<lower=0> N_replicate; // number of replicates |
| 36 | + array [N_individual] int N; // number of tries |
| 37 | + array [N_gene, N_individual] int Y; // number of heads for each coin |
| 38 | + array [N_individual] int condition_id; // id of conditions |
| 39 | + array [N_sample] int individual_id; // id of individual |
| 40 | + array [N_sample] int replicate_id; // id of replicate |
| 41 | +} |
| 42 | + |
| 43 | +transformed data { |
| 44 | + // convert int to real N for easier division in generated quantities block |
| 45 | + array [N_individual] real Nr; |
| 46 | + Nr = N; |
| 47 | +} |
| 48 | + |
| 49 | +parameters { |
| 50 | + real <lower=0> phi; |
| 51 | + real <lower=0, upper=1> kappa; |
| 52 | + |
| 53 | + vector [N_gene] alpha; |
| 54 | + |
| 55 | + vector <lower=0> [N_condition] sigma_condition; |
| 56 | + vector <lower=0> [N_condition] sigma_individual; |
| 57 | + real <lower=0> sigma_alpha; |
| 58 | + real <lower=0> sigma_alpha_rep; |
| 59 | + real <lower=0> sigma_beta_rep; |
| 60 | + |
| 61 | + array [N_individual] vector [N_gene] z_alpha_individual; |
| 62 | + array [N_individual] vector [N_gene] z_beta_individual; |
| 63 | + array [N_condition] vector [N_gene] z_beta_condition; |
| 64 | + array [N_individual, N_replicate] vector [N_gene] z_alpha_sample; |
| 65 | + array [N_individual, N_replicate] vector [N_gene] z_beta_sample; |
| 66 | +} |
| 67 | + |
| 68 | +transformed parameters { |
| 69 | + array [N_condition] vector [N_gene] beta_condition; |
| 70 | + array [N_individual] vector [N_gene] alpha_individual; |
| 71 | + array [N_individual] vector [N_gene] beta_individual; |
| 72 | + array [N_individual, N_replicate] vector [N_gene] alpha_sample; |
| 73 | + array [N_individual, N_replicate] vector [N_gene] beta_sample; |
| 74 | + array [N_individual] vector <lower=0, upper=1> [N_gene] theta; |
| 75 | + |
| 76 | + for(i in 1:N_condition) { |
| 77 | + beta_condition[i] = 0 + sigma_condition[i] * z_beta_condition[i]; |
| 78 | + } |
| 79 | + |
| 80 | + for(i in 1:N_individual) { |
| 81 | + alpha_individual[i] = alpha + sigma_alpha * z_alpha_individual[i]; |
| 82 | + beta_individual[i] = beta_condition[condition_id[i]] + sigma_individual[condition_id[i]] * z_beta_individual[i]; |
| 83 | + } |
| 84 | + |
| 85 | + for(i in 1:N_sample) { |
| 86 | + alpha_sample[individual_id[i], replicate_id[i]] = alpha_individual[individual_id[i]] + sigma_alpha_rep * z_alpha_sample[individual_id[i], replicate_id[i]]; |
| 87 | + beta_sample[individual_id[i], replicate_id[i]] = beta_individual[individual_id[i]] + sigma_beta_rep * z_beta_sample[individual_id[i], replicate_id[i]]; |
| 88 | + theta[i] = inv_logit(alpha_sample[individual_id[i], replicate_id[i]] + beta_sample[individual_id[i], replicate_id[i]]); |
| 89 | + } |
| 90 | +} |
| 91 | + |
| 92 | +model { |
| 93 | + target += beta_lpdf(kappa | 1.0, 5.0); |
| 94 | + target += exponential_lpdf(phi | 0.01); |
| 95 | + target += normal_lpdf(alpha | -3.0, 3.0); |
| 96 | + |
| 97 | + for(i in 1:N_condition) { |
| 98 | + target += std_normal_lpdf(z_beta_condition[i]); |
| 99 | + } |
| 100 | + for(i in 1:N_individual) { |
| 101 | + target += std_normal_lpdf(z_beta_individual[i]); |
| 102 | + } |
| 103 | + for(i in 1:N_sample) { |
| 104 | + target += std_normal_lpdf(z_alpha_sample[individual_id[i], replicate_id[i]]); |
| 105 | + target += std_normal_lpdf(z_beta_sample[individual_id[i], replicate_id[i]]); |
| 106 | + } |
| 107 | + |
| 108 | + target += cauchy_lpdf(sigma_individual | 0.0, 1.0); |
| 109 | + target += cauchy_lpdf(sigma_condition | 0.0, 1.0); |
| 110 | + target += cauchy_lpdf(sigma_alpha | 0.0, 1.0); |
| 111 | + target += cauchy_lpdf(sigma_alpha_rep | 0.0, 1.0); |
| 112 | + target += cauchy_lpdf(sigma_beta_rep | 0.0, 1.0); |
| 113 | + |
| 114 | + for(i in 1:N_individual) { |
| 115 | + for(j in 1:N_gene) { |
| 116 | + target += zibb_lpmf(Y[j,i] | N[i], theta[i][j], phi, kappa); |
| 117 | + } |
| 118 | + } |
| 119 | +} |
| 120 | + |
| 121 | +generated quantities { |
| 122 | + // PPC: count usage (repertoire-level) |
| 123 | + array [N_gene, N_individual] int Yhat_rep; |
| 124 | + |
| 125 | + // PPC: proportion usage (repertoire-level) |
| 126 | + array [N_gene, N_individual] real Yhat_rep_prop; |
| 127 | + |
| 128 | + // PPC: proportion usage at a gene level in condition |
| 129 | + array [N_condition] vector [N_gene] Yhat_condition_prop; |
| 130 | + |
| 131 | + // LOG-LIK |
| 132 | + array [N_individual] vector [N_gene] log_lik; |
| 133 | + |
| 134 | + // DGU matrix |
| 135 | + matrix [N_gene, N_condition*(N_condition-1)/2] dgu; |
| 136 | + matrix [N_gene, N_condition*(N_condition-1)/2] dgu_prob; |
| 137 | + int c = 1; |
| 138 | + |
| 139 | + //TODO: speedup, run in C++ not big factor on performance |
| 140 | + for(j in 1:N_gene) { |
| 141 | + for(i in 1:N_individual) { |
| 142 | + Yhat_rep[j, i] = zibb_rng(Y[j, i], N[i], theta[i][j], phi, kappa); |
| 143 | + log_lik[i][j] = zibb_lpmf(Y[j, i] | N[i], theta[i][j], phi, kappa); |
| 144 | + |
| 145 | + if(Nr[i] == 0.0) { |
| 146 | + Yhat_rep_prop[j, i] = 0; |
| 147 | + } |
| 148 | + else { |
| 149 | + Yhat_rep_prop[j, i] = Yhat_rep[j,i]/Nr[i]; |
| 150 | + } |
| 151 | + } |
| 152 | + for(g in 1:N_condition) { |
| 153 | + Yhat_condition_prop[g][j] = z_rng(alpha[j], beta_condition[g][j], 0); |
| 154 | + } |
| 155 | + } |
| 156 | + |
| 157 | + // DGU analysis |
| 158 | + for(i in 1:(N_condition-1)) { |
| 159 | + for(j in (i+1):N_condition) { |
| 160 | + dgu[,c] = beta_condition[i]-beta_condition[j]; |
| 161 | + dgu_prob[,c]=to_vector(Yhat_condition_prop[i])-to_vector(Yhat_condition_prop[j]); |
| 162 | + c = c + 1; |
| 163 | + } |
| 164 | + } |
| 165 | +} |
0 commit comments