Open
Description
Issue description
In the logistic regression model when I run code i face Attribute erorr.
A clear and concise description of what the bug is.
Code example/repro steps
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer(strip_accents=None,
lowercase=False,
preprocessor=None)
param_grid = [{'vect__ngram_range': [(1, 1)],
'vect__stop_words': [stop_words, None],
'vect__tokenizer': [tokenizer, tokenizer_porter],
'vect__preprocessor': [None, preprocessor],
'clf__penalty': ['l1', 'l2'],
'clf__C': [1.0, 10.0, 100.0]},
{'vect__ngram_range': [(1,1)],
'vect__stop_words': [stop_words, None],
'vect__tokenizer': [tokenizer, tokenizer_porter],
'vect__preprocessor': [None, preprocessor],
'vect__use_idf':[False],
'vect__norm':[None],
'clf__penalty': ['l1', 'l2'],
'clf__C': [1.0, 10.0, 100.0]},
]
lr_tfidf = Pipeline([('vect', tfidf),
('clf', LogisticRegression(random_state=0))])
#The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid
gs_lr_tfidf = GridSearchCV(lr_tfidf, param_grid,
scoring='accuracy',
cv=5,
verbose=1,
n_jobs=-1)
gs_lr_tfidf.fit(X_train, y_train)
after run this code I face the split not found error.
Please try to provide a minimal example to repro the bug.
Error messages and stack traces are also helpful.
AttributeError: split not found
Activity