-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_installation.py
73 lines (56 loc) · 1.81 KB
/
test_installation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from __future__ import print_function
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from NeuralNetwork import *
from DataCollection import *
from upperbound import upperbound
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
network_type = 'full-qnn'
finetune = True
# GPU SETTINGS#
def CudaMemorySettings():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.2
config.gpu_options.visible_device_list = "0"
set_session(tf.Session(config=config))
def CpuMemorySettings():
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
session_conf = tf.ConfigProto(
device_count={'GPU': 0},
allow_soft_placement=True,
log_device_placement=False)
set_session(tf.Session(config=session_conf))
dataSetName = "mnist"
bound = "ub"
gameType = "cooperative"
image_index = 0
distanceMeasure = "L2"
distance = 10
eta = (distanceMeasure, distance)
tau = 1
wbits = 2
abits = 2
seed = 10
# CudaMemorySettings()
CpuMemorySettings()
nameFile = "seed_" + str(seed) + "_" + str(dataSetName) + "_" + str(image_index) + "_Wbits" + str(
wbits) + "Abits" + str(abits) + ".txt"
print("name file: " + nameFile)
# calling algorithms
dc = DataCollection("%s_%s_%s_%s_%s_%s_%s" % (dataSetName, bound, tau, gameType, image_index, eta[0], eta[1]))
dc.initialiseIndex(image_index)
print("ok")
(elapsedTime, newConfident, percent, l2dist, l1dist, l0dist, maxFeatures) = (
upperbound(dataSetName, bound, tau, gameType, image_index, eta, wbits, abits, nameFile, seed))
dc.addRunningTime(elapsedTime)
dc.addConfidence(newConfident)
dc.addManipulationPercentage(percent)
dc.addl2Distance(l2dist)
dc.addl1Distance(l1dist)
dc.addl0Distance(l0dist)
dc.addMaxFeatures(maxFeatures)
dc.provideDetails()
dc.summarise()
dc.close()
K.clear_session()