-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression.php
567 lines (561 loc) · 19.4 KB
/
regression.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
<?php include('header.php') ?>
<style>
/* <!-- To add --> */
tr, th {
width: 4rem;
height: 3rem;
border: 1px solid black;
text: large;
text-align: center;
}
th {
text-align: center;
background: #d0d0d0;
border-color: black;
}
/* <!-- To add --> */
</style>
<script src="https://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="https://code.highcharts.com/highcharts.js"></script>
<script src="https://code.highcharts.com/modules/data.js"></script>
<!-- Container (Section) -->
<div id="about" class="container-fluid">
<div class="row">
<div class="col-sm-8">
<h2>Regression</h2><br>
<h4>Regression is a ML algorithm that can be trained to predict real numbered outputs; like temperature, stock price, etc. Regression is based on a hypothesis that can be linear, quadratic, polynomial, non-linear, etc. The hypothesis is a function that based on some hidden parameters and the input values. In the training phase, the hidden parameters are optimized w.r.t. the input values presented in the training. The process that does the optimization is the gradient decent algorithm. If you are using neural networks, then you also need Back-propagation algorithm to compute gradient at each layer. Once the hypothesis parameters got trained (when they gave least error during the training), then the same hypothesis with the trained parameters are used with new input values to predict outcomes that will be again real values.</h4>
</div>
<div class="col-sm-4">
</br></br></br></br></br>
<img src = "images/rgrr-image.png" alt="regression image">
</div>
</div>
</div>
<div class="container-fluid bg-grey">
<div class="row">
<h4><strong>IMPORTANCE:</strong> <p>Regression models (both linear and non-linear) are used for predicting a real value, like salary for example. If your independent variable is time, then you are forecasting future values, otherwise your model is predicting present but unknown values. Regression technique vary from Linear Regression to SVR and Random Forests Regression.</p></h4><br>
</div>
</div>
<div id="about" class="container-fluid">
<div class="row">
<div class="col-sm-8">
<div id="container" style="min-width: 310px; height: 400px; margin: 0 auto"></div>
<h4>In the visualization, you can see how linear regression models the relationship between a scalar response(X - dependent variable) and an explanatory variable(Y - independent variable). You can change the values for X and Y to view the changes for the regression.</h4>
<h4>Here are the values for the regressed line and the statistical values for the mean/average and standard deviation:</h4>
<div id="y">:)</div>
</div>
<br><br><h4>Click the table to edit the numbers for the X and Y variables:</h4>
</div>
<!-- <button onClick="runGraph()">Finish Editing</button><br><br> -->
<button onClick="runGraph()" class="btn btn-xs">Finish Editing</button><br><br>
<table id="datatable">
<tr>
<th>x</th>
<th>y</th>
</tr>
</table>
<!-- </div> -->
<!-- </div> -->
</div>
<!-- To add -->
<div id="about" class="container-fluid">
<div class="row">
<div class="col-sm-8">
<h3><b>Prepare the datasets<b></h3><br>
<h4>There are different datasets available but let us implement it with our own data sets. A simple linear regression has dependent variables (Y) and independent variables (X).</h4>
<h4>So our data set is ready and since it is a simple linear regression we have only one-factor size of the house affecting the price of the house. In case of multiple linear regression, we would have had more factors affecting house price like locality, the number of rooms etc.
Now we need to find the regression line(a line which fits best in the above scatter plot so that we can predict the response y(ie. cost of the house) for any new values of x(ie. size of the house).</h4>
</div>
<div class="col-sm-4 col-xs-12">
<!-- <div class="panel panel-default text-center">
<div class="panel-heading">
<h1>Box 1</h1>
</div>
<div class="panel-footer">
<h3>Measure</h3>
<h4>Look where you stand out against your peers</h4>
<button class="btn btn-lg">Get started</button>
</div>
</div> -->
</div>
</div>
<img src = "images/dataset-image.png" align="center" alt="dataset image"><br><br>
</div>
<div class="container-fluid bg-grey">
<div class="row">
<p>import pandas ad pd</p>
<p>import matplotlib.plyplot as plt</p>
<p>import numpy as np</p>
</div>
</div>
<div id="about" class="container-fluid">
<div class="row">
<div class="col-sm-8">
<h3><b>Import the required libraries<b></h3><br>
<h4>NumPy is a library for the Python programming language. We use it in machine learning because we have to deal with large data in machine learning and this is faster than the normal array. (Get used to numpy arrays, we will use it everywhere). </h4>
<h4>Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy. Basically, this helps in plotting of graphs.</h4>
<h4>Here we have used “numpy as np” and “matplotlib.pyplot as plt” it is done to rename the huge names to something smaller(ease of ). </h4>
</div>
<div class="col-sm-4 col-xs-12">
<!-- <div class="panel panel-default text-center">
<div class="panel-heading">
<h1>Box 2</h1>
</div>
<div class="panel-footer">
<h3>Measure</h3>
<h4>Look where you stand out against your peers</h4>
<button class="btn btn-lg">Get started</button>
</div>
</div> -->
</div>
</div>
</div>
<div id="about" class="container-fluid">
<div class="row">
<div class="col-sm-8">
<h3><b>Define the functions required<b></h3><br>
<h4><b>Function1: </b>It is a function to determine or estimate the coefficients where x and y values are passed into this function.</h4>
<h4><b>Steps Include:</b>
<ol>
<li>Calculate n</li>
<li>Calculate the mean of both x and y numpy array.</li>
<li>Calculate cross-deviation and deviation: Just remember here we are calculating SS_xy and SS_xx which is Sum of Squared Errors.</li>
<li>Calculate regression coefficients: The amount or value by which the regression line needs to be moved.</li>
</ol>
</h4>
</div>
<div class="col-sm-4 col-xs-12">
<!-- <div class="panel panel-default text-center">
<div class="panel-heading">
<h1>Box 3</h1>
</div>
<div class="panel-footer">
<h3>Measure</h3>
<h4>Look where you stand out against your peers</h4>
<button class="btn btn-lg">Get started</button>
</div>
</div> -->
</div>
</div>
</div>
<div class="container-fluid bg-grey">
<div class="row">
<p>def estimate_coefficients(x, y):</p></br>
<p>n = np.size(x)</p>
<p>mean_x, mean_y = np.mean(x), np.mean(y)</p>
<p>SS_xy = np.sum(y * x - n * mean_y * mean_x)</p>
<p>SS_xx = np.sum(x * x - n * mean_x * mean_x)</p>
<p>b_1 = SS_xy / SS_xx</p>
<p>b_0 = mean_y - b_1 * mean_x</p></br>
<p>return(b_0, b_1)</p>
</div>
</div>
<div id="about" class="container-fluid">
<div class="row">
<div class="col-sm-8">
</br>
<h4><b>Function2: </b>It is a function to plot the graph based on calculated values.</h4>
<h4><b>Steps Include:</b>
<ol>
<li>Plot the points: “plt.scatter” plots the points on the graph where</li>
<ul style="list-style-type:square;">
<ol>“x and y” are the locations of the points on the graph</ol>
<ol>“color” is the colour of the plotted points change it to red or green or orange and play around for more possible colours</ol>
<ol>“marker” is the shape of the points like a circle or any other symbols for different types of marker</ol>
</ul>
<li>Predict the regression line value: Take the minimum error possible, the regression line is decided here.</li>
<li>Plot the regression line</li>
<li>Labels are put here instead of just x and y ie the name for x and y are put on the graph here.</li>
<li>Show the plotted graph</li>
</ol>
</h4>
</div>
<div class="col-sm-4 col-xs-12">
<div class="panel panel-default text-center">
<div class="panel-heading">
<h1>Classification</h1>
</div>
<div class="panel-footer">
<h3>Question 1</h3>
<input style= "color:black; text-decoration: underline; border:#000;" id='answer1'class="panel-footer" type="text" name="" value=""><p> short form as np.array() </p>
<p id="right1" style="display:none; color:#008000">You are right! Good going!</p>
<p id="wrong1" style="display:none; color:#ff0000">Oops! You are wrong. Please try again.</p>
<button class="btn btn-lg" id="question1" type="button" name="button">Submit</button>
<!-- <button class="btn btn-lg" type="button" name="button">See answer</button> -->
</div>
</div>
</div>
</div>
</div>
<div class="container-fluid bg-grey">
<div class="row">
<p>def plot_regression_line(x, y, b):</p></br>
<p>plt.scatter(x, y, color="m", marker="o", s="30)</p>
<p>y_pred = b[0] + b[1]*x</p>
<p>plt.plot(x, y_pred, color="g")</p>
<p>plt.x.label("Size")</p>
<p>plt.ylabel("Cost")</p>
<p>plt.show()</p>
</div>
</div>
<div id="about" class="container-fluid">
<div class="row">
<div class="col-sm-8">
<h4><b>Function3: </b>Main function</h4>
<h4><b>Steps Include:</b>
<ol>
<li>Gather the data sets required ie. x and y.</li>
<li>Calculate coefficients required ie. the value of moving of regression line in both x and y-direction.</li>
<li>Plot the graph</li>
<li>Write the main and call the main function</li>
</ol></br>
So here if asked for the price of the house for the size of 7Ksq feet the answer would be around 920K where the real value would be around 900K so the error is 20K.
</h4>
</div>
<div class="col-sm-4 col-xs-12">
<img src = "images/lr-image.png" align="center" alt="lr image"><br><br>
</div>
</div>
</div>
<div class="container-fluid bg-grey">
<div class="row">
<p>def main():</p></br>
<p>x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])</p>
<p>y = np.array([300, 350, 500, 700, 800, 850, 900, 1000, 1200])
<p>b = estimate_coefficients(x, y)</p>
<p>print("Estimate coefficients:\nb=0 = {} \nn_b1 = {}".format(b[0], b[1]))</p>
<p>plot_regression_line(x, y, b)</p>
</br></br></br>
<p>if _name_ == "_main_":</p></br>
<p>main()</p>
</div>
</div>
<!-- Container (Section) -->
<div id="services" class="container-fluid text-center">
<h2>IN DEPTH</h2>
<h4>Machine Learning</h4>
<br>
<div class="row slideanim">
<div class="col-sm-4">
<span class="glyphicon glyphicon-off logo-small"></span>
<h4>DATA PREPROCESSING</h4>
<p>First and important step</p>
</div>
<div class="col-sm-4">
<span class="glyphicon glyphicon-ok logo-small"></span>
<h4>REGRESSION</h4>
<p>Numerical Predictive Analysis</p>
</div>
<div class="col-sm-4">
<span class="glyphicon glyphicon-th-large logo-small"></span>
<h4>CLASSIFICATION</h4>
<p>Categorical Predictive Analysis</p>
</div>
</div>
<br><br>
<div class="row slideanim">
<div class="col-sm-4">
<span class="glyphicon glyphicon-barcode logo-small"></span>
<h4>CLUSTERING</h4>
<p>Unsupervised Predictive Ananlysis</p>
</div>
<div class="col-sm-4">
<span class="glyphicon glyphicon-certificate logo-small"></span>
<h4>NEURAL NETWORKS</h4>
<p>Advanced computing systems similar to the brain</p>
</div>
<div class="col-sm-4">
<span class="glyphicon glyphicon-wrench logo-small"></span>
<h4 style="color:#303030;">DIMENSIONALITY REDUCTION</h4>
<p>Increasing efficiency everytime</p>
</div>
</div>
</div>
<!-- Container (Section) -->
<div id="pricing" class="container-fluid">
<div class="text-center">
<h2>Let's Get Started</h2>
<h4>Choose a section that you want to start with</h4>
</div>
<div class="row slideanim">
<div class="col-sm-4 col-xs-12">
<div class="panel panel-default text-center">
<div class="panel-heading">
<h1>Tutorials</h1>
</div>
<div class="panel-footer">
<h3>Learn</h3>
<h4>Learn about differnet algorithms in ML</h4>
<button class="btn btn-lg"><a href="classification.php">Go to Classification!</a></button>
</div>
</div>
</div>
<div class="col-sm-4 col-xs-12">
<div class="panel panel-default text-center">
<div class="panel-heading">
<h1>Quiz</h1>
</div>
<div class="panel-footer">
<h3>Evaluate</h3>
<h4>Understand how well you know your concepts</h4>
<?php if(isset($_SESSION['name'])){echo '<button class="btn btn-lg"><a href="Classification_Quiz.php">Take quiz!</a></button>';}
else{echo "<button class='btn btn-lg'>Please ".'<a href="/tutscorner/login.php">'.'login'.'</a>'." to take the quiz.</button>";} ?>
</div>
</div>
</div>
<div class="col-sm-4 col-xs-12">
<div class="panel panel-default text-center">
<div class="panel-heading">
<h1>Scoreboard</h1>
</div>
<div class="panel-footer">
<h3>Measure</h3>
<h4>Look where you stand out against your peers</h4>
<button class="btn btn-lg"><a href="Scoreboard.php">Scoreboard</a></button>
</div>
</div>
</div>
</div>
</div>
<script type="text/javascript">
$("#question1").on('click', function(e){
e.preventDefault();
$answer = $("#answer1").val();
console.log('check');
console.log($answer);
if($answer=="numpy.array()"){
console.log("Right");
$('#right1').show();
$('#wrong1').hide();
}
else{
$('#wrong1').show();
$('#right1').hide();
}
})
</script>
<script>
$(document).ready(function(){
// Add smooth scrolling to all links in navbar + footer link
$(".navbar a, footer a[href='#myPage']").on('click', function(event) {
// Make sure this.hash has a value before overriding default behavior
if (this.hash !== "") {
// Prevent default anchor click behavior
event.preventDefault();
// Store hash
var hash = this.hash;
// Using jQuery's animate() method to add smooth page scroll
// The optional number (900) specifies the number of milliseconds it takes to scroll to the specified area
$('html, body').animate({
scrollTop: $(hash).offset().top
}, 900, function(){
// Add hash (#) to URL when done scrolling (default click behavior)
window.location.hash = hash;
});
} // End if
});
});
<!-- To add -->
var randomArray = [];
function getRandomVariable() {
var number = 1 + Math.floor(Math.random() * 1000);
return number;
}
function createRandomArray(numOfElements) {
for (var i = 0; i < numOfElements; i++) {
var arrayOfThisRow = [];
arrayOfThisRow.push(getRandomVariable());
arrayOfThisRow.push(getRandomVariable());
randomArray.push(arrayOfThisRow);
}
randomArray.sort(Comparator);
}
function Comparator(a,b){
if (a[0] < b[0]) return -1;
if (a[0] > b[0]) return 1;
return 0;
}
createRandomArray(20);
for (var p = 0; p < randomArray.length; p++) {
$("#datatable").append("<tr><td><div contenteditable='true' id='editNum'>" + randomArray[p][0] + "</div></td><td><div contenteditable='true' id='editNum'>" + randomArray[p][1] + "</div></td></tr>");
}
var real = [];
var x = [];
var y = [];
var xySum = 0;
var xSquaredSum = 0;
var xAverage = 0;
var yAverage = 0;
var b2 = 0;
var b1 = 0;
var stdArray = [];
var std = 0;
var predicted = [];
function initialise() {
real = [];
x = [];
y = [];
xySum = 0;
xAverage = 0;
yAverage = 0;
b2 = 0;
b1 = 0;
stdArray = [];
std = 0;
predicted = [];
xSquaredSum = 0;
}
function getValues() {
$("table#datatable tr").each(function() {
var arrayOfThisRow = [];
var tableData = $(this).find('td');
if (tableData.length > 0) {
tableData.each(function() {
hi = parseInt($(this).text());
arrayOfThisRow.push(hi);});
real.push(arrayOfThisRow);
}
});
for (var i = 0; i < real.length; i++) {
x.push(real[i][0]);
y.push(real[i][1]);
}
}
// put into [[x, y][x, y]] format
function formatValues() {
for (var i = 0; i < x.length; i++) {
real[i] = [];
for (var k = 0; k < 1; k++) {
real[i].push(x[i]);
real[i].push(y[i]);
}
}
}
// gets sum of X*Y
function getXY() {
for (var l = 0; l < x.length; l++) {
for (var m = 0; m < 1; m++) {
xySum += real[l][m] * real[l][m+1];
}
}
}
// gets sum of x^2
function getXSquared() {
for (var l = 0; l < x.length; l++) {
for (var m = 0; m < 1; m++) {
xSquaredSum += Math.pow(real[l][m], 2);
}
}
}
// gets average of x and y
function getAverages() {
var totalx = 0;
var totaly = 0;
for (var i = 0; i < x.length; i++) {
totalx += x[i];
totaly += y[i];
}
xAverage = totalx/x.length;
yAverage = totaly/x.length;
}
//b2 = [xySum - (count*xAverage*yAverage)]/[X^2sum - (count*xAverage^2)]
function getB2() {
b2 = (xySum - (x.length*xAverage*yAverage)) / (xSquaredSum - (x.length * Math.pow(xAverage, 2)));
}
function getB1() {
b1 = yAverage - xAverage * b2;
}
// Get predicted linear x y coords
function calculateYHat() {
for (var i = 0; i < x.length; i++) {
predicted[i] = [];
for (var k = 0; k < 1; k++) {
predicted[i].push(x[i]);
predicted[i].push(b1+b2*x[i]);
}
}
}
// Get standard deviation
function getStd() {
for (var i = 0; i < x.length; i++) {
stdArray.push(Math.pow(x[i]-xAverage, 2));
std += stdArray[i];
}
std /= x.length;
std = Math.sqrt(std);
}
function compareNumbers(a, b) {
return a[0] - b[0];
}
function updateText() {
document.getElementById("y").innerHTML = ("Predicted = " + b1.toFixed(2) + " + " + b2.toFixed(2) + " * x<br>Average = " + yAverage.toFixed(2)) + "<br>Standard Deviation = " + std.toFixed(2);
};
function runGraph () {
initialise();
getValues();
formatValues();
getAverages();
getXY();
getXSquared();
getB2();
getB1();
calculateYHat();
getStd();
updateText();
$(function () {
$('#container').highcharts({
title: {
text: 'Simple Linear Regression',
x: -20 //center
},
<!-- subtitle: { -->
<!-- text: 'Inconsistencies by Mei', -->
<!-- x: -20 -->
<!-- }, -->
xAxis: {
title: {
text: 'X'
},
plotLines: [{
value: 0,
width: 1,
color: '#808080'
}]
},
yAxis: {
title: {
text: 'Y'
},
plotLines: [{
value: 0,
width: 1,
color: '#808080'
}]
},
tooltip: {
},
legend: {
layout: 'vertical',
align: 'right',
verticalAlign: 'middle',
borderWidth: 0
},
series: [{
name: 'Real',
data: real,
color: '#0f3c3d'
}, {
name: 'Predicted',
data: predicted,
color: '#9fb1b1'
}]
});
});
}
runGraph();
document.getElementById("editNum").addEventListener("input", function() {
runGraph();
}, false);
<!-- To add -->
</script>
<?php include('footer.php') ?>