-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
59 lines (49 loc) · 2.07 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from typing import Dict, Optional
import gym
from meta_critics.running_spec import RunningSpec
def create_env_from_spec(running_spec: RunningSpec,
render_mode: Optional[str] = None,
do_close: Optional[bool] = True,
autoreset: bool = False,
apply_api_compatibility: Optional[bool] = None,
disable_env_checker: Optional[bool] = None,
max_episode_steps: Optional[int] = 0) -> gym.Env:
"""Creates a gum environment. This method mainly used to infer observation and action space.
:param autoreset:
:param disable_env_checker:
:param apply_api_compatibility:
:param max_episode_steps:
:param running_spec: dh-maml spec.
:param render_mode: render mode "human" or none
:param do_close: if False will not close env, for human rendering.
:return:
"""
env_args = None
if hasattr(running_spec, 'env_args'):
env_args = running_spec.env_args
if max_episode_steps > 0:
env_args["max_episode_steps"] = max_episode_steps
if env_args is None and max_episode_steps > 0:
if max_episode_steps > 0:
env_args["max_episode_steps"] = max_episode_steps
if hasattr(running_spec, 'env_name'):
if env_args is None:
env = gym.make(running_spec.env_name, render_mode=render_mode)
else:
env = gym.make(running_spec.env_name, **env_args)
# env = gym.make(running_spec.env_name,
# autoreset=False, apply_api_compatibility=None,
# disable_env_checker=None, render_mode=render_mode, **env_args)
if do_close:
env.close()
return env
def create_env_from_name(env_name: str, env_args: Dict, render_mode: Optional[str] = None) -> gym.Env:
"""Create environment.
:return: True if environment created.
"""
if env_args is None:
env = gym.make(env_name)
else:
env = gym.make(env_name, **env_args)
env.close()
return env