Open
Description
Summary
Update: This error does not occur with cmdstan
v2.33.1.
Running cmdstan
v2.34.1 (23 January 2024) and cmdstanr
v0.7.1. Reprex follows.
Attempting to fit a trivial model:
library(brms)
dat <- data.frame(y = rnorm(1000))
mod <- brm(y ~ 1, data = dat, backend = "cmdstanr")
... fails with:
Error in !is.null(csv_contents$metadata$save_warmup) && csv_contents$metadata$save_warmup: invalid 'y' type in 'x && y'
Debugging with options(error = recover)
, it seems that csv_contents$metadata$save_warmup
is "true" (character), not TRUE
(logical), when we reach lines 1437-1438 of fit.R.
Reprex
library(brms)
#> Loading required package: Rcpp
#> Loading 'brms' package (version 2.21.0). Useful instructions
#> can be found by typing help('brms'). A more detailed introduction
#> to the package is available through vignette('brms_overview').
#>
#> Attaching package: 'brms'
#> The following object is masked from 'package:stats':
#>
#> ar
dat <- data.frame(y = rnorm(1000))
mod <- brm(y ~ 1, data = dat, backend = "cmdstanr")
#> Start sampling
#> Running MCMC with 4 sequential chains...
#>
#> Chain 1 Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1 Iteration: 100 / 2000 [ 5%] (Warmup)
#> Chain 1 Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1 Iteration: 300 / 2000 [ 15%] (Warmup)
#> Chain 1 Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1 Iteration: 500 / 2000 [ 25%] (Warmup)
#> Chain 1 Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1 Iteration: 700 / 2000 [ 35%] (Warmup)
#> Chain 1 Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1 Iteration: 900 / 2000 [ 45%] (Warmup)
#> Chain 1 Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1 Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1 Iteration: 1100 / 2000 [ 55%] (Sampling)
#> Chain 1 Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1 Iteration: 1300 / 2000 [ 65%] (Sampling)
#> Chain 1 Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1 Iteration: 1500 / 2000 [ 75%] (Sampling)
#> Chain 1 Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1 Iteration: 1700 / 2000 [ 85%] (Sampling)
#> Chain 1 Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1 Iteration: 1900 / 2000 [ 95%] (Sampling)
#> Chain 1 Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1 finished in 0.1 seconds.
#> Chain 2 Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2 Iteration: 100 / 2000 [ 5%] (Warmup)
#> Chain 2 Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2 Iteration: 300 / 2000 [ 15%] (Warmup)
#> Chain 2 Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2 Iteration: 500 / 2000 [ 25%] (Warmup)
#> Chain 2 Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2 Iteration: 700 / 2000 [ 35%] (Warmup)
#> Chain 2 Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2 Iteration: 900 / 2000 [ 45%] (Warmup)
#> Chain 2 Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2 Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2 Iteration: 1100 / 2000 [ 55%] (Sampling)
#> Chain 2 Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2 Iteration: 1300 / 2000 [ 65%] (Sampling)
#> Chain 2 Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2 Iteration: 1500 / 2000 [ 75%] (Sampling)
#> Chain 2 Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2 Iteration: 1700 / 2000 [ 85%] (Sampling)
#> Chain 2 Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2 Iteration: 1900 / 2000 [ 95%] (Sampling)
#> Chain 2 Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2 finished in 0.1 seconds.
#> Chain 3 Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3 Iteration: 100 / 2000 [ 5%] (Warmup)
#> Chain 3 Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3 Iteration: 300 / 2000 [ 15%] (Warmup)
#> Chain 3 Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3 Iteration: 500 / 2000 [ 25%] (Warmup)
#> Chain 3 Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3 Iteration: 700 / 2000 [ 35%] (Warmup)
#> Chain 3 Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3 Iteration: 900 / 2000 [ 45%] (Warmup)
#> Chain 3 Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3 Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3 Iteration: 1100 / 2000 [ 55%] (Sampling)
#> Chain 3 Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3 Iteration: 1300 / 2000 [ 65%] (Sampling)
#> Chain 3 Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3 Iteration: 1500 / 2000 [ 75%] (Sampling)
#> Chain 3 Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3 Iteration: 1700 / 2000 [ 85%] (Sampling)
#> Chain 3 Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3 Iteration: 1900 / 2000 [ 95%] (Sampling)
#> Chain 3 Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3 finished in 0.1 seconds.
#> Chain 4 Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4 Iteration: 100 / 2000 [ 5%] (Warmup)
#> Chain 4 Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4 Iteration: 300 / 2000 [ 15%] (Warmup)
#> Chain 4 Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4 Iteration: 500 / 2000 [ 25%] (Warmup)
#> Chain 4 Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4 Iteration: 700 / 2000 [ 35%] (Warmup)
#> Chain 4 Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4 Iteration: 900 / 2000 [ 45%] (Warmup)
#> Chain 4 Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4 Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4 Iteration: 1100 / 2000 [ 55%] (Sampling)
#> Chain 4 Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4 Iteration: 1300 / 2000 [ 65%] (Sampling)
#> Chain 4 Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4 Iteration: 1500 / 2000 [ 75%] (Sampling)
#> Chain 4 Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4 Iteration: 1700 / 2000 [ 85%] (Sampling)
#> Chain 4 Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4 Iteration: 1900 / 2000 [ 95%] (Sampling)
#> Chain 4 Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4 finished in 0.1 seconds.
#>
#> All 4 chains finished successfully.
#> Mean chain execution time: 0.1 seconds.
#> Total execution time: 1.0 seconds.
#> Error in !is.null(csv_contents$metadata$save_warmup) && csv_contents$metadata$save_warmup: invalid 'y' type in 'x && y'
Created on 2024-04-24 with reprex v2.0.2
Session info
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.0 (2022-04-22)
#> os macOS 14.4.1
#> system aarch64, darwin20
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz America/Los_Angeles
#> date 2024-04-24
#> pandoc 3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> abind 1.4-5 2016-07-21 [1] CRAN (R 4.2.0)
#> backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.0)
#> bayesplot 1.11.1 2024-02-15 [1] CRAN (R 4.2.3)
#> bridgesampling 1.1-2 2021-04-16 [1] CRAN (R 4.2.0)
#> brms * 2.21.0 2024-03-20 [1] CRAN (R 4.2.0)
#> Brobdingnag 1.2-9 2022-10-19 [1] CRAN (R 4.2.0)
#> checkmate 2.3.1 2023-12-04 [1] CRAN (R 4.2.3)
#> cli 3.6.2 2023-12-11 [1] CRAN (R 4.2.3)
#> cmdstanr 0.7.1 2024-04-24 [1] Github (stan-dev/cmdstanr@2bec769)
#> coda 0.19-4.1 2024-01-31 [1] CRAN (R 4.2.3)
#> codetools 0.2-18 2020-11-04 [1] CRAN (R 4.2.0)
#> colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.2.0)
#> curl 5.2.1 2024-03-01 [1] CRAN (R 4.2.3)
#> data.table 1.15.4 2024-03-30 [1] CRAN (R 4.2.3)
#> digest 0.6.34 2024-01-11 [1] CRAN (R 4.2.3)
#> distributional 0.4.0 2024-02-07 [1] CRAN (R 4.2.3)
#> dplyr 1.1.4 2023-11-17 [1] CRAN (R 4.2.3)
#> emmeans 1.8.9 2023-10-17 [1] CRAN (R 4.2.0)
#> estimability 1.4.1 2022-08-05 [1] CRAN (R 4.2.0)
#> evaluate 0.23 2023-11-01 [1] CRAN (R 4.2.0)
#> fansi 1.0.6 2023-12-08 [1] CRAN (R 4.2.3)
#> fastmap 1.1.1 2023-02-24 [1] CRAN (R 4.2.0)
#> fs 1.6.3 2023-07-20 [1] CRAN (R 4.2.0)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.0)
#> ggplot2 3.5.0 2024-02-23 [1] CRAN (R 4.2.3)
#> glue 1.7.0 2024-01-09 [1] CRAN (R 4.2.3)
#> gridExtra 2.3 2017-09-09 [1] CRAN (R 4.2.0)
#> gtable 0.3.4 2023-08-21 [1] CRAN (R 4.2.0)
#> htmltools 0.5.7 2023-11-03 [1] CRAN (R 4.2.0)
#> inline 0.3.19 2021-05-31 [1] CRAN (R 4.2.0)
#> jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.2.3)
#> knitr 1.45 2023-10-30 [1] CRAN (R 4.2.0)
#> lattice 0.20-45 2021-09-22 [1] CRAN (R 4.2.0)
#> lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.2.0)
#> loo 2.7.0 2024-02-24 [1] CRAN (R 4.2.3)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
#> Matrix 1.6-5 2024-01-11 [1] CRAN (R 4.2.3)
#> matrixStats 1.3.0 2024-04-11 [1] CRAN (R 4.2.3)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
#> mvtnorm 1.2-3 2023-08-25 [1] CRAN (R 4.2.0)
#> nlme 3.1-157 2022-03-25 [1] CRAN (R 4.2.0)
#> pillar 1.9.0 2023-03-22 [1] CRAN (R 4.2.0)
#> pkgbuild 1.4.3 2023-12-10 [1] CRAN (R 4.2.3)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
#> posterior 1.5.0 2023-10-31 [1] CRAN (R 4.2.0)
#> processx 3.8.4 2024-03-16 [1] CRAN (R 4.2.3)
#> ps 1.7.6 2024-01-18 [1] CRAN (R 4.2.3)
#> purrr 1.0.2 2023-08-10 [1] CRAN (R 4.2.0)
#> QuickJSR 1.1.3 2024-01-31 [1] CRAN (R 4.2.3)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.2.0)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.2.0)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.2.0)
#> R.utils 2.12.0 2022-06-28 [1] CRAN (R 4.2.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
#> Rcpp * 1.0.12 2024-01-09 [1] CRAN (R 4.2.0)
#> RcppParallel 5.1.7 2023-02-27 [1] CRAN (R 4.2.0)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.0)
#> rlang 1.1.3 2024-01-10 [1] CRAN (R 4.2.3)
#> rmarkdown 2.25 2023-09-18 [1] CRAN (R 4.2.0)
#> rstan 2.32.6 2024-03-05 [1] CRAN (R 4.2.3)
#> rstantools 2.4.0 2024-01-31 [1] CRAN (R 4.2.3)
#> rstudioapi 0.15.0 2023-07-07 [1] CRAN (R 4.2.0)
#> scales 1.3.0 2023-11-28 [1] CRAN (R 4.2.3)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.0)
#> StanHeaders 2.32.6 2024-03-01 [1] CRAN (R 4.2.3)
#> stringi 1.8.3 2023-12-11 [1] CRAN (R 4.2.3)
#> stringr 1.5.1 2023-11-14 [1] CRAN (R 4.2.3)
#> styler 1.7.0 2022-03-13 [1] CRAN (R 4.2.0)
#> tensorA 0.36.2.1 2023-12-13 [1] CRAN (R 4.2.3)
#> tibble 3.2.1 2023-03-20 [1] CRAN (R 4.2.0)
#> tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.2.3)
#> utf8 1.2.4 2023-10-22 [1] CRAN (R 4.2.0)
#> V8 4.4.2 2024-02-15 [1] CRAN (R 4.2.3)
#> vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.2.3)
#> withr 3.0.0 2024-01-16 [1] CRAN (R 4.2.3)
#> xfun 0.41 2023-11-01 [1] CRAN (R 4.2.0)
#> xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.0)
#> yaml 2.3.8 2023-12-11 [1] CRAN (R 4.2.3)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library
#>
#> ──────────────────────────────────────────────────────────────────────────────