Open
Description
Summary:
Generate the cholesky factor of an exponentiated quadratic covariance matrix.
Description:
The prim
implementation will look something like this:
template<typename T_x, typename T_alpha, typename T_rho, typename T_sigma>
Eigen::Matrix exp_quad_chol(std::vector<T_x> x,
T_alpha alpha,
T_rho rho,
T_sigma sigma) {
check_positive("exp_quad_chol", "marginal variance", alpha);
check_positive("exp_quad_chol", "length-scale", rho);
check_positive("exp_quad_chol", sigma);
typedef typename stan::return_type<T_x, T_alpha, T_rho, T_sigma>::type T_scal;
Eigen::Matrix<T_scal, -1, -1> cov = cov_exp_quad(x, alpha, rho);
for (int i = 0; i < cov.rows(); ++i)
cov(i, i) = cov(i, i) + square(sigma);
Eigen::Matrix<T_scal, -1, -1> L_cov = cholesky_decompose(cov);
return L_cov
}
Additional Information:
Will need to be coupled with a rename of the parameters in cov_exp_quad
. See #495.
Current Version:
v2.14.0