@@ -57,39 +57,13 @@ pip install . --install-option="--use-superbuild"
5757pip install . --install-option=" --use-system-deps"
5858```
5959
60- ## Quick Start
61-
62- ``` python
63- import odesolver as ode
64- import numpy as np
65-
66- # Define your ODE system
67- # Example: Lorenz attractor
68- def lorenz_system (t , state , params ):
69- x, y, z = state
70- sigma, rho, beta = params
71-
72- dxdt = sigma * (y - x)
73- dydt = x * (rho - z) - y
74- dzdt = x * y - beta * z
75-
76- return np.array([dxdt, dydt, dzdt])
77-
78- # Set up initial conditions and parameters
79- initial_state = np.array([1.0 , 1.0 , 1.0 ])
80- params = np.array([10.0 , 28.0 , 8.0 / 3.0 ])
81-
82- # Create and run simulation
83- # (Specific API details will depend on the actual implementation)
84- ```
85-
8660## Examples
8761
8862The library includes several example systems:
8963
9064- ** Lorenz Attractor** : Classic chaotic system
91- - ** Three-Point System** : Multi-body dynamics
92- - ** Four-Point System** : Extended multi-body system
65+ - ** Three-Point System** : Will follow
66+ - ** Four-Point System** : Will follow
9367
9468See the ` examples/ ` directory for complete implementations.
9569
@@ -128,11 +102,12 @@ If you use ODEVisualization in your research, please cite:
128102
129103``` bibtex
130104@software{odevisualization,
131- title={ODE Visualization: GPU-Accelerated Analysis of Ordinary Differential Equations for the Functional Renormalization Group},
132- author={Kades, Lukas; Sadlo, Filip; Pawlowski, Jan M.}
133- url={https://github.com/statphysandml/ODEVisualization},
134- version={1.0.0},
135- year={2025}
105+ title = {ODE Visualization: GPU-Accelerated Analysis of Ordinary Differential Equations for the Functional Renormalization Group},
106+ author = {Kades, Lukas and Sadlo, Filip and Pawlowski, Jan M.},
107+ year = {2025},
108+ version = {1.0.0},
109+ url = {https://github.com/statphysandml/ODEVisualization},
110+ note = {Accessed: 2025-08-06}
136111}
137112```
138113
0 commit comments