You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: data/data.csv
+2-2
Original file line number
Diff line number
Diff line change
@@ -2278,8 +2278,8 @@ base.strided.ssum,"\nbase.strided.ssum( N, x, stride )\n Computes the sum of
2278
2278
base.strided.ssum.ndarray,"\nbase.strided.ssum.ndarray( N, x, stride, offset )\n Computes the sum of single-precision floating-point strided array elements\n using alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssum.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > var N = base.floor( x.length / 2 );\n > base.strided.ssum.ndarray( N, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dsum, base.strided.smean, base.strided.snansum, base.strided.gsum"
2279
2279
base.strided.ssumkbn,"\nbase.strided.ssumkbn( N, x, stride )\n Computes the sum of single-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm.\n\n The `N` and `stride` parameters determine which elements in the strided\n array are accessed at runtime.\n\n Indexing is relative to the first index. To introduce an offset, use a typed\n array view.\n\n If `N <= 0`, the function returns `0.0`.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumkbn( x.length, x, 1 )\n 1.0\n\n // Using `N` and `stride` parameters:\n > x = new Float32Array( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );\n > base.strided.ssumkbn( 3, x, 2 )\n 1.0\n\n // Using view offsets:\n > var x0 = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );\n > base.strided.ssumkbn( 3, x1, 2 )\n -1.0\n\n\nbase.strided.ssumkbn.ndarray( N, x, stride, offset )\n Computes the sum of single-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumkbn.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > x = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > base.strided.ssumkbn.ndarray( 3, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dsumkbn, base.strided.gsumkbn, base.strided.snansumkbn, base.strided.ssum, base.strided.ssumkbn2, base.strided.ssumors, base.strided.ssumpw\n"
2280
2280
base.strided.ssumkbn.ndarray,"\nbase.strided.ssumkbn.ndarray( N, x, stride, offset )\n Computes the sum of single-precision floating-point strided array elements\n using an improved Kahan–Babuška algorithm and alternative indexing\n semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumkbn.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > x = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > base.strided.ssumkbn.ndarray( 3, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dsumkbn, base.strided.gsumkbn, base.strided.snansumkbn, base.strided.ssum, base.strided.ssumkbn2, base.strided.ssumors, base.strided.ssumpw"
2281
-
base.strided.ssumkbn2,"\nbase.strided.ssumkbn2( N, x, stride )\n Computes the sum of single-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm.\n\n The `N` and `stride` parameters determine which elements in `x` are accessed\n at runtime.\n\n Indexing is relative to the first index. To introduce an offset, use a typed\n array view.\n\n If `N <= 0`, the function returns `0.0`.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumkbn2( x.length, x, 1 )\n 1.0\n\n // Using `N` and `stride` parameters:\n > x = new Float32Array( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );\n > var N = base.floor( x.length / 2 );\n > var stride = 2;\n > base.strided.ssumkbn2( N, x, stride )\n 1.0\n\n // Using view offsets:\n > var x0 = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );\n > N = base.floor( x0.length / 2 );\n > stride = 2;\n > base.strided.ssumkbn2( N, x1, stride )\n -1.0\n\nbase.strided.ssumkbn2.ndarray( N, x, stride, offset )\n Computes the sum of single-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumkbn2.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > var N = base.floor( x.length / 2 );\n > base.strided.ssumkbn2.ndarray( N, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dsumkbn2, base.strided.gsumkbn2, base.strided.snansumkbn2, base.strided.ssum, base.strided.ssumkbn, base.strided.ssumors, base.strided.ssumpw\n"
2282
-
base.strided.ssumkbn2.ndarray,"\nbase.strided.ssumkbn2.ndarray( N, x, stride, offset )\n Computes the sum of single-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumkbn2.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > var N = base.floor( x.length / 2 );\n > base.strided.ssumkbn2.ndarray( N, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dsumkbn2, base.strided.gsumkbn2, base.strided.snansumkbn2, base.strided.ssum, base.strided.ssumkbn, base.strided.ssumors, base.strided.ssumpw"
2281
+
base.strided.ssumkbn2,"\nbase.strided.ssumkbn2( N, x, stride )\n Computes the sum of single-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm.\n\n The `N` and `stride` parameters determine which elements in the strided\n array are accessed at runtime.\n\n Indexing is relative to the first index. To introduce an offset, use a typed\n array view.\n\n If `N <= 0`, the function returns `0.0`.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumkbn2( x.length, x, 1 )\n 1.0\n\n // Using `N` and `stride` parameters:\n > x = new Float32Array( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );\n > base.strided.ssumkbn2( 3, x, 2 )\n 1.0\n\n // Using view offsets:\n > var x0 = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );\n > base.strided.ssumkbn2( 3, x1, 2 )\n -1.0\n\n\nbase.strided.ssumkbn2.ndarray( N, x, stride, offset )\n Computes the sum of single-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumkbn2.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > x = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > base.strided.ssumkbn2.ndarray( 3, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dsumkbn2, base.strided.gsumkbn2, base.strided.snansumkbn2, base.strided.ssum, base.strided.ssumkbn, base.strided.ssumors, base.strided.ssumpw\n"
2282
+
base.strided.ssumkbn2.ndarray,"\nbase.strided.ssumkbn2.ndarray( N, x, stride, offset )\n Computes the sum of single-precision floating-point strided array elements\n using a second-order iterative Kahan–Babuška algorithm and alternative\n indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumkbn2.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > x = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > base.strided.ssumkbn2.ndarray( 3, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dsumkbn2, base.strided.gsumkbn2, base.strided.snansumkbn2, base.strided.ssum, base.strided.ssumkbn, base.strided.ssumors, base.strided.ssumpw"
2283
2283
base.strided.ssumors,"\nbase.strided.ssumors( N, x, stride )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation.\n\n The `N` and `stride` parameters determine which elements in the strided\n array are accessed at runtime.\n\n Indexing is relative to the first index. To introduce an offset, use a typed\n array view.\n\n If `N <= 0`, the function returns `0.0`.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumors( x.length, x, 1 )\n 1.0\n\n // Using `N` and `stride` parameters:\n > x = new Float32Array( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );\n > base.strided.ssumors( 3, x, 2 )\n 1.0\n\n // Using view offsets:\n > var x0 = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );\n > base.strided.ssumors( 3, x1, 2 )\n -1.0\n\n\nbase.strided.ssumors.ndarray( N, x, stride, offset )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation and alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumors.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > x = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > base.strided.ssumors.ndarray( 3, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dsumors, base.strided.gsumors, base.strided.snansumors, base.strided.ssum, base.strided.ssumkbn2, base.strided.ssumpw\n"
2284
2284
base.strided.ssumors.ndarray,"\nbase.strided.ssumors.ndarray( N, x, stride, offset )\n Computes the sum of single-precision floating-point strided array elements\n using ordinary recursive summation and alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumors.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > x = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > base.strided.ssumors.ndarray( 3, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dsumors, base.strided.gsumors, base.strided.snansumors, base.strided.ssum, base.strided.ssumkbn2, base.strided.ssumpw"
2285
2285
base.strided.ssumpw,"\nbase.strided.ssumpw( N, x, stride )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation.\n\n The `N` and `stride` parameters determine which elements in the strided\n array are accessed at runtime.\n\n Indexing is relative to the first index. To introduce an offset, use a typed\n array view.\n\n If `N <= 0`, the function returns `0.0`.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumpw( x.length, x, 1 )\n 1.0\n\n // Using `N` and `stride` parameters:\n > x = new Float32Array( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );\n > base.strided.ssumpw( 3, x, 2 )\n 1.0\n\n // Using view offsets:\n > var x0 = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );\n > base.strided.ssumpw( 3, x1, 2 )\n -1.0\n\n\nbase.strided.ssumpw.ndarray( N, x, stride, offset )\n Computes the sum of single-precision floating-point strided array elements\n using pairwise summation and alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float32Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );\n > base.strided.ssumpw.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > x = new Float32Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );\n > base.strided.ssumpw.ndarray( 3, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dsumpw, base.strided.gsumpw, base.strided.snansumpw, base.strided.ssum, base.strided.ssumkbn2, base.strided.ssumors\n"
0 commit comments