You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: data/data.csv
+2-2
Original file line number
Diff line number
Diff line change
@@ -1698,8 +1698,8 @@ base.strided.dnansum,"\nbase.strided.dnansum( N, x, stride )\n Computes the s
1698
1698
base.strided.dnansum.ndarray,"\nbase.strided.dnansum.ndarray( N, x, stride, offset )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansum.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > base.strided.dnansum.ndarray( 4, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dnanmean, base.strided.dsum, base.strided.snansum, base.strided.gnansum"
1699
1699
base.strided.dnansumkbn,"\nbase.strided.dnansumkbn( N, x, stride )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm.\n\n The `N` and `stride` parameters determine which elements in `x` are accessed\n at runtime.\n\n Indexing is relative to the first index. To introduce an offset, use a typed\n array view.\n\n If `N <= 0`, the function returns `0.0`.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumkbn( x.length, x, 1 )\n 1.0\n\n // Using `N` and `stride` parameters:\n > x = new Float64Array( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > var stride = 2;\n > base.strided.dnansumkbn( N, x, stride )\n 1.0\n\n // Using view offsets:\n > var x0 = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );\n > N = base.floor( x0.length / 2 );\n > stride = 2;\n > base.strided.dnansumkbn( N, x1, stride )\n -1.0\n\nbase.strided.dnansumkbn.ndarray( N, x, stride, offset )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumkbn.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > base.strided.dnansumkbn.ndarray( N, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dnansum, base.strided.dnansumors, base.strided.dnansumpw, base.strided.dsumkbn, base.strided.gnansumkbn, base.strided.snansumkbn\n"
1700
1700
base.strided.dnansumkbn.ndarray,"\nbase.strided.dnansumkbn.ndarray( N, x, stride, offset )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using an improved Kahan–Babuška algorithm and\n alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumkbn.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > base.strided.dnansumkbn.ndarray( N, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dnansum, base.strided.dnansumors, base.strided.dnansumpw, base.strided.dsumkbn, base.strided.gnansumkbn, base.strided.snansumkbn"
1701
-
base.strided.dnansumkbn2,"\nbase.strided.dnansumkbn2( N, x, stride )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm.\n\n The `N` and `stride` parameters determine which elements in `x` are accessed\n at runtime.\n\n Indexing is relative to the first index. To introduce an offset, use a typed\n array view.\n\n If `N <= 0`, the function returns `0.0`.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumkbn2( x.length, x, 1 )\n 1.0\n\n // Using `N` and `stride` parameters:\n > x = new Float64Array( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > var stride = 2;\n > base.strided.dnansumkbn2( N, x, stride )\n 1.0\n\n // Using view offsets:\n > var x0 = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );\n > N = base.floor( x0.length / 2 );\n > stride = 2;\n > base.strided.dnansumkbn2( N, x1, stride )\n -1.0\n\nbase.strided.dnansumkbn2.ndarray( N, x, stride, offset )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumkbn2.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > base.strided.dnansumkbn2.ndarray( N, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dnansum, base.strided.dnansumors, base.strided.dnansumpw, base.strided.dsumkbn2, base.strided.gnansumkbn2, base.strided.snansumkbn2\n"
1702
-
base.strided.dnansumkbn2.ndarray,"\nbase.strided.dnansumkbn2.ndarray( N, x, stride, offset )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumkbn2.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > base.strided.dnansumkbn2.ndarray( N, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dnansum, base.strided.dnansumors, base.strided.dnansumpw, base.strided.dsumkbn2, base.strided.gnansumkbn2, base.strided.snansumkbn2"
1701
+
base.strided.dnansumkbn2,"\nbase.strided.dnansumkbn2( N, x, stride )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm.\n\n The `N` and stride parameters determine which elements in the strided \n array are accessed at runtime.\n\n Indexing is relative to the first index. To introduce an offset, use a typed\n array view.\n\n If `N <= 0`, the function returns `0.0`.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumkbn2( x.length, x, 1 )\n 1.0\n\n // Using `N` and `stride` parameters:\n > x = new Float64Array( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0, NaN, NaN ] );\n > base.strided.dnansumkbn2( 4, x, 2 )\n 1.0\n\n // Using view offsets:\n > var x0 = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );\n > base.strided.dnansumkbn2( 4, x1, 2 )\n -1.0\n\n\nbase.strided.dnansumkbn2.ndarray( N, x, stride, offset )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumkbn2.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > base.strided.dnansumkbn2.ndarray( 4, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dnansum, base.strided.dnansumors, base.strided.dnansumpw, base.strided.dsumkbn2, base.strided.gnansumkbn2, base.strided.snansumkbn2\n"
1702
+
base.strided.dnansumkbn2.ndarray,"\nbase.strided.dnansumkbn2.ndarray( N, x, stride, offset )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using a second-order iterative Kahan–Babuška\n algorithm and alternative indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumkbn2.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > base.strided.dnansumkbn2.ndarray( 4, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dnansum, base.strided.dnansumors, base.strided.dnansumpw, base.strided.dsumkbn2, base.strided.gnansumkbn2, base.strided.snansumkbn2"
1703
1703
base.strided.dnansumors,"\nbase.strided.dnansumors( N, x, stride )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation.\n\n The `N` and `stride` parameters determine which elements in `x` are accessed\n at runtime.\n\n Indexing is relative to the first index. To introduce an offset, use a typed\n array view.\n\n If `N <= 0`, the function returns `0.0`.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumors( x.length, x, 1 )\n 1.0\n\n // Using `N` and `stride` parameters:\n > x = new Float64Array( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > var stride = 2;\n > base.strided.dnansumors( N, x, stride )\n 1.0\n\n // Using view offsets:\n > var x0 = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );\n > N = base.floor( x0.length / 2 );\n > stride = 2;\n > base.strided.dnansumors( N, x1, stride )\n -1.0\n\nbase.strided.dnansumors.ndarray( N, x, stride, offset )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation and alternative\n indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumors.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > base.strided.dnansumors.ndarray( N, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dnansum, base.strided.dnansumkbn2, base.strided.dnansumpw, base.strided.dsumors, base.strided.gnansumors, base.strided.snansumors\n"
1704
1704
base.strided.dnansumors.ndarray,"\nbase.strided.dnansumors.ndarray( N, x, stride, offset )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using ordinary recursive summation and alternative\n indexing semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumors.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > base.strided.dnansumors.ndarray( N, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dnansum, base.strided.dnansumkbn2, base.strided.dnansumpw, base.strided.dsumors, base.strided.gnansumors, base.strided.snansumors"
1705
1705
base.strided.dnansumpw,"\nbase.strided.dnansumpw( N, x, stride )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation.\n\n The `N` and `stride` parameters determine which elements in `x` are accessed\n at runtime.\n\n Indexing is relative to the first index. To introduce an offset, use a typed\n array view.\n\n If `N <= 0`, the function returns `0.0`.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumpw( x.length, x, 1 )\n 1.0\n\n // Using `N` and `stride` parameters:\n > x = new Float64Array( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > var stride = 2;\n > base.strided.dnansumpw( N, x, stride )\n 1.0\n\n // Using view offsets:\n > var x0 = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 );\n > N = base.floor( x0.length / 2 );\n > stride = 2;\n > base.strided.dnansumpw( N, x1, stride )\n -1.0\n\nbase.strided.dnansumpw.ndarray( N, x, stride, offset )\n Computes the sum of double-precision floating-point strided array elements,\n ignoring `NaN` values and using pairwise summation and alternative indexing\n semantics.\n\n While typed array views mandate a view offset based on the underlying\n buffer, the `offset` parameter supports indexing semantics based on a\n starting index.\n\n Parameters\n ----------\n N: integer\n Number of indexed elements.\n\n x: Float64Array\n Input array.\n\n stride: integer\n Index increment.\n\n offset: integer\n Starting index.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n // Standard Usage:\n > var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );\n > base.strided.dnansumpw.ndarray( x.length, x, 1, 0 )\n 1.0\n\n // Using offset parameter:\n > var x = new Float64Array( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );\n > var N = base.floor( x.length / 2 );\n > base.strided.dnansumpw.ndarray( N, x, 2, 1 )\n -1.0\n\n See Also\n --------\n base.strided.dnansum, base.strided.dnansumkbn2, base.strided.dnansumors, base.strided.dsumpw, base.strided.gnansumpw, base.strided.snansumpw\n"
0 commit comments