|
| 1 | +// quaddouble.cpp: components of a quad-double: cli to show the sign/scale/limb components of a quad-double floating-point |
| 2 | +// |
| 3 | +// Copyright (C) 2017 Stillwater Supercomputing, Inc. |
| 4 | +// SPDX-License-Identifier: MIT |
| 5 | +// |
| 6 | +// This file is part of the universal numbers project, which is released under an MIT Open Source license. |
| 7 | +#include <universal/utility/directives.hpp> |
| 8 | +#include <universal/utility/bit_cast.hpp> |
| 9 | +#include <limits> |
| 10 | +#include <universal/number/qd/qd.hpp> |
| 11 | +#include <universal/common/number_traits_reports.hpp> |
| 12 | + |
| 13 | +// ShowRepresentations prints the different output formats for the quad-double type |
| 14 | +template<typename Scalar> |
| 15 | +void ShowRepresentations(std::ostream& ostr, sw::universal::qd f) { |
| 16 | + using namespace sw::universal; |
| 17 | + auto defaultPrecision = ostr.precision(); // save stream state |
| 18 | + |
| 19 | + constexpr int max_digits10 = std::numeric_limits<Scalar>::max_digits10; // floating-point attribute for printing scientific format |
| 20 | + |
| 21 | + Scalar v(f); // convert to target cfloat |
| 22 | + ostr << "scientific : " << std::setprecision(max_digits10) << v << '\n'; |
| 23 | + ostr << "triple form : " << to_triple(v) << '\n'; |
| 24 | + ostr << "binary form : " << '\n' << to_binary(v, true) << '\n'; |
| 25 | + ostr << "color coded : " << '\n' << color_print(v, true) << '\n'; |
| 26 | + |
| 27 | + ostr << std::setprecision(defaultPrecision); |
| 28 | +} |
| 29 | + |
| 30 | +/* |
| 31 | + quad-double numbers are an unevaluated set of four doubles. |
| 32 | + Each double-precision segment has an epsilon of approximately 2^53. |
| 33 | + Combining four double-precision numbers gives as a precision of roughly 4 times 53 bits, or 212 bits. |
| 34 | + Therefore, the epsilon of a quad-double number is approximately 2^212/2 = 2^211 |
| 35 | + 2^211 = 3.2910091146424120843099383651147e+63 ~ 3.29100911e63 |
| 36 | +*/ |
| 37 | + |
| 38 | +// receive a float and print the components of a long double representation |
| 39 | +int main(int argc, char** argv) |
| 40 | +try { |
| 41 | + using namespace sw::universal; |
| 42 | + using Scalar = qd; |
| 43 | + |
| 44 | + if (argc != 2) { |
| 45 | + std::cerr << "quaddouble: components of a quad-double floating-point\n"; |
| 46 | + std::cerr << "Show the sign/scale/limbs components of a quad-double.\n"; |
| 47 | + std::cerr << "Usage: quaddouble fp_value_string\n"; |
| 48 | + std::cerr << "Example: quaddouble 0.03124999\n"; |
| 49 | + ShowRepresentations<Scalar>(std::cerr, 0.03124999); |
| 50 | + |
| 51 | + std::cout << "Number Traits of quad-double\n"; |
| 52 | + numberTraits<Scalar>(std::cout); |
| 53 | + |
| 54 | + std::cout << "largest normal number\n"; |
| 55 | + std::cout << to_binary(std::numeric_limits<Scalar>::max()) << '\n'; |
| 56 | + std::cout << "smallest normal number\n"; |
| 57 | + std::cout << to_binary(std::numeric_limits<Scalar>::min()) << '\n'; |
| 58 | + std::cout << "smallest denormalized number\n"; |
| 59 | + std::cout << to_binary(std::numeric_limits<Scalar>::denorm_min()) << '\n'; |
| 60 | + |
| 61 | + Scalar epsilon{ std::numeric_limits< Scalar >::epsilon() }; |
| 62 | + std::cout << "epsilon : " << epsilon << '\n'; |
| 63 | + std::cout << to_binary(epsilon) << '\n'; |
| 64 | + std::cout.flush(); |
| 65 | + return EXIT_SUCCESS; // signal successful completion for ctest |
| 66 | + } |
| 67 | + |
| 68 | + qd q(argv[1]); |
| 69 | + ShowRepresentations<Scalar>(std::cout, q); |
| 70 | + |
| 71 | + std::cout.flush(); |
| 72 | + return EXIT_SUCCESS; |
| 73 | +} |
| 74 | +catch (const char* const msg) { |
| 75 | + std::cerr << msg << std::endl; |
| 76 | + return EXIT_FAILURE; |
| 77 | +} |
| 78 | +catch (...) { |
| 79 | + std::cerr << "Caught unknown exception" << std::endl; |
| 80 | + return EXIT_FAILURE; |
| 81 | +} |
0 commit comments