|
1 | | -# coding: utf-8 |
| 1 | +# # coding: utf-8 |
2 | 2 |
|
3 | | -import numpy as np |
| 3 | +# import numpy as np |
4 | 4 |
|
5 | | -from psydac.feec.multipatch.examples.hcurl_source_pbms_conga_2d import solve_hcurl_source_pbm |
6 | | -from psydac.feec.multipatch.examples.hcurl_eigen_pbms_conga_2d import hcurl_solve_eigen_pbm |
7 | | -from psydac.feec.multipatch.examples.hcurl_eigen_pbms_dg_2d import hcurl_solve_eigen_pbm_dg |
8 | | -from psydac.feec.multipatch.examples.timedomain_maxwell import solve_td_maxwell_pbm |
| 5 | +# from psydac.feec.multipatch.examples.hcurl_source_pbms_conga_2d import solve_hcurl_source_pbm |
| 6 | +# from psydac.feec.multipatch.examples.hcurl_eigen_pbms_conga_2d import hcurl_solve_eigen_pbm |
| 7 | +# from psydac.feec.multipatch.examples.hcurl_eigen_pbms_dg_2d import hcurl_solve_eigen_pbm_dg |
| 8 | +# from psydac.feec.multipatch.examples.timedomain_maxwell import solve_td_maxwell_pbm |
9 | 9 |
|
10 | 10 |
|
11 | | -def test_time_harmonic_maxwell_pretzel_f(): |
12 | | - nc = 4 |
13 | | - deg = 2 |
| 11 | +# def test_time_harmonic_maxwell_pretzel_f(): |
| 12 | +# nc = 4 |
| 13 | +# deg = 2 |
14 | 14 |
|
15 | | - source_type = 'manu_maxwell_inhom' |
16 | | - domain_name = 'pretzel_f' |
17 | | - source_proj = 'tilde_Pi' |
| 15 | +# source_type = 'manu_maxwell_inhom' |
| 16 | +# domain_name = 'pretzel_f' |
| 17 | +# source_proj = 'tilde_Pi' |
18 | 18 |
|
19 | | - omega = np.pi |
20 | | - eta = -omega**2 # source |
| 19 | +# omega = np.pi |
| 20 | +# eta = -omega**2 # source |
21 | 21 |
|
22 | | - diags = solve_hcurl_source_pbm( |
23 | | - nc=nc, deg=deg, |
24 | | - eta=eta, |
25 | | - nu=0, |
26 | | - mu=1, |
27 | | - domain_name=domain_name, |
28 | | - source_type=source_type, |
29 | | - source_proj=source_proj, |
30 | | - backend_language='pyccel-gcc') |
| 22 | +# diags = solve_hcurl_source_pbm( |
| 23 | +# nc=nc, deg=deg, |
| 24 | +# eta=eta, |
| 25 | +# nu=0, |
| 26 | +# mu=1, |
| 27 | +# domain_name=domain_name, |
| 28 | +# source_type=source_type, |
| 29 | +# source_proj=source_proj, |
| 30 | +# backend_language='pyccel-gcc') |
31 | 31 |
|
32 | | - assert abs(diags["err"] - 0.007201508128407582) < 1e-10 |
| 32 | +# assert abs(diags["err"] - 0.007201508128407582) < 1e-10 |
33 | 33 |
|
34 | 34 |
|
35 | | -def test_time_harmonic_maxwell_pretzel_f_nc(): |
36 | | - deg = 2 |
37 | | - nc = np.array([8, 8, 8, 8, 8, 4, 4, 4, 4, |
38 | | - 4, 4, 4, 4, 8, 8, 8, 4, 4]) |
| 35 | +# def test_time_harmonic_maxwell_pretzel_f_nc(): |
| 36 | +# deg = 2 |
| 37 | +# nc = np.array([8, 8, 8, 8, 8, 4, 4, 4, 4, |
| 38 | +# 4, 4, 4, 4, 8, 8, 8, 4, 4]) |
39 | 39 |
|
40 | | - source_type = 'manu_maxwell_inhom' |
41 | | - domain_name = 'pretzel_f' |
42 | | - source_proj = 'tilde_Pi' |
| 40 | +# source_type = 'manu_maxwell_inhom' |
| 41 | +# domain_name = 'pretzel_f' |
| 42 | +# source_proj = 'tilde_Pi' |
43 | 43 |
|
44 | | - omega = np.pi |
45 | | - eta = -omega**2 # source |
| 44 | +# omega = np.pi |
| 45 | +# eta = -omega**2 # source |
46 | 46 |
|
47 | | - diags = solve_hcurl_source_pbm( |
48 | | - nc=nc, deg=deg, |
49 | | - eta=eta, |
50 | | - nu=0, |
51 | | - mu=1, |
52 | | - domain_name=domain_name, |
53 | | - source_type=source_type, |
54 | | - source_proj=source_proj, |
55 | | - backend_language='pyccel-gcc') |
| 47 | +# diags = solve_hcurl_source_pbm( |
| 48 | +# nc=nc, deg=deg, |
| 49 | +# eta=eta, |
| 50 | +# nu=0, |
| 51 | +# mu=1, |
| 52 | +# domain_name=domain_name, |
| 53 | +# source_type=source_type, |
| 54 | +# source_proj=source_proj, |
| 55 | +# backend_language='pyccel-gcc') |
56 | 56 |
|
57 | | - assert abs(diags["err"] - 0.004849165663310541) < 1e-10 |
| 57 | +# assert abs(diags["err"] - 0.004849165663310541) < 1e-10 |
58 | 58 |
|
59 | 59 |
|
60 | | -def test_maxwell_eigen_curved_L_shape(): |
61 | | - domain_name = 'curved_L_shape' |
62 | | - domain = [[1, 3], [0, np.pi / 4]] |
| 60 | +# def test_maxwell_eigen_curved_L_shape(): |
| 61 | +# domain_name = 'curved_L_shape' |
| 62 | +# domain = [[1, 3], [0, np.pi / 4]] |
63 | 63 |
|
64 | | - ncells = 4 |
65 | | - degree = [2, 2] |
66 | | - |
67 | | - ref_sigmas = [ |
68 | | - 0.181857115231E+01, |
69 | | - 0.349057623279E+01, |
70 | | - 0.100656015004E+02, |
71 | | - 0.101118862307E+02, |
72 | | - 0.124355372484E+02, |
73 | | - ] |
74 | | - sigma = 7 |
75 | | - nb_eigs_solve = 7 |
76 | | - nb_eigs_plot = 7 |
77 | | - skip_eigs_threshold = 1e-7 |
78 | | - |
79 | | - diags, eigenvalues = hcurl_solve_eigen_pbm( |
80 | | - ncells=ncells, degree=degree, |
81 | | - gamma_h=0, |
82 | | - generalized_pbm=True, |
83 | | - nu=0, |
84 | | - mu=1, |
85 | | - sigma=sigma, |
86 | | - skip_eigs_threshold=skip_eigs_threshold, |
87 | | - nb_eigs_solve=nb_eigs_solve, |
88 | | - nb_eigs_plot=nb_eigs_plot, |
89 | | - domain_name=domain_name, domain=domain, |
90 | | - backend_language='pyccel-gcc', |
91 | | - plot_dir='./plots/eigen_maxell', |
92 | | - ) |
93 | | - |
94 | | - error = 0 |
95 | | - n_errs = min(len(ref_sigmas), len(eigenvalues)) |
96 | | - for k in range(n_errs): |
97 | | - error += (eigenvalues[k] - ref_sigmas[k])**2 |
98 | | - error = np.sqrt(error) |
99 | | - |
100 | | - assert abs(error - 0.01291539899483907) < 1e-10 |
101 | | - |
102 | | - |
103 | | -def test_maxwell_eigen_curved_L_shape_nc(): |
104 | | - domain_name = 'curved_L_shape' |
105 | | - domain = [[1, 3], [0, np.pi / 4]] |
106 | | - |
107 | | - ncells = np.array([[None, 4], |
108 | | - [4, 8]]) |
109 | | - |
110 | | - degree = [2, 2] |
111 | | - |
112 | | - ref_sigmas = [ |
113 | | - 0.181857115231E+01, |
114 | | - 0.349057623279E+01, |
115 | | - 0.100656015004E+02, |
116 | | - 0.101118862307E+02, |
117 | | - 0.124355372484E+02, |
118 | | - ] |
119 | | - sigma = 7 |
120 | | - nb_eigs_solve = 7 |
121 | | - nb_eigs_plot = 7 |
122 | | - skip_eigs_threshold = 1e-7 |
123 | | - |
124 | | - diags, eigenvalues = hcurl_solve_eigen_pbm( |
125 | | - ncells=ncells, degree=degree, |
126 | | - gamma_h=0, |
127 | | - generalized_pbm=True, |
128 | | - nu=0, |
129 | | - mu=1, |
130 | | - sigma=sigma, |
131 | | - skip_eigs_threshold=skip_eigs_threshold, |
132 | | - nb_eigs_solve=nb_eigs_solve, |
133 | | - nb_eigs_plot=nb_eigs_plot, |
134 | | - domain_name=domain_name, domain=domain, |
135 | | - backend_language='pyccel-gcc', |
136 | | - plot_dir='./plots/eigen_maxell_nc', |
137 | | - ) |
138 | | - |
139 | | - error = 0 |
140 | | - n_errs = min(len(ref_sigmas), len(eigenvalues)) |
141 | | - for k in range(n_errs): |
142 | | - error += (eigenvalues[k] - ref_sigmas[k])**2 |
143 | | - error = np.sqrt(error) |
144 | | - |
145 | | - assert abs(error - 0.010504876643873904) < 1e-10 |
146 | | - |
147 | | - |
148 | | -def test_maxwell_eigen_curved_L_shape_dg(): |
149 | | - domain_name = 'curved_L_shape' |
150 | | - domain = [[1, 3], [0, np.pi / 4]] |
151 | | - |
152 | | - ncells = np.array([[None, 4], |
153 | | - [4, 8]]) |
154 | | - |
155 | | - degree = [2, 2] |
156 | | - |
157 | | - ref_sigmas = [ |
158 | | - 0.181857115231E+01, |
159 | | - 0.349057623279E+01, |
160 | | - 0.100656015004E+02, |
161 | | - 0.101118862307E+02, |
162 | | - 0.124355372484E+02, |
163 | | - ] |
164 | | - sigma = 7 |
165 | | - nb_eigs_solve = 7 |
166 | | - nb_eigs_plot = 7 |
167 | | - skip_eigs_threshold = 1e-7 |
168 | | - |
169 | | - diags, eigenvalues = hcurl_solve_eigen_pbm_dg( |
170 | | - ncells=ncells, degree=degree, |
171 | | - nu=0, |
172 | | - mu=1, |
173 | | - sigma=sigma, |
174 | | - skip_eigs_threshold=skip_eigs_threshold, |
175 | | - nb_eigs_solve=nb_eigs_solve, |
176 | | - nb_eigs_plot=nb_eigs_plot, |
177 | | - domain_name=domain_name, domain=domain, |
178 | | - backend_language='pyccel-gcc', |
179 | | - plot_dir='./plots/eigen_maxell_dg', |
180 | | - ) |
181 | | - |
182 | | - error = 0 |
183 | | - n_errs = min(len(ref_sigmas), len(eigenvalues)) |
184 | | - for k in range(n_errs): |
185 | | - error += (eigenvalues[k] - ref_sigmas[k])**2 |
186 | | - error = np.sqrt(error) |
| 64 | +# ncells = 4 |
| 65 | +# degree = [2, 2] |
| 66 | + |
| 67 | +# ref_sigmas = [ |
| 68 | +# 0.181857115231E+01, |
| 69 | +# 0.349057623279E+01, |
| 70 | +# 0.100656015004E+02, |
| 71 | +# 0.101118862307E+02, |
| 72 | +# 0.124355372484E+02, |
| 73 | +# ] |
| 74 | +# sigma = 7 |
| 75 | +# nb_eigs_solve = 7 |
| 76 | +# nb_eigs_plot = 7 |
| 77 | +# skip_eigs_threshold = 1e-7 |
| 78 | + |
| 79 | +# diags, eigenvalues = hcurl_solve_eigen_pbm( |
| 80 | +# ncells=ncells, degree=degree, |
| 81 | +# gamma_h=0, |
| 82 | +# generalized_pbm=True, |
| 83 | +# nu=0, |
| 84 | +# mu=1, |
| 85 | +# sigma=sigma, |
| 86 | +# skip_eigs_threshold=skip_eigs_threshold, |
| 87 | +# nb_eigs_solve=nb_eigs_solve, |
| 88 | +# nb_eigs_plot=nb_eigs_plot, |
| 89 | +# domain_name=domain_name, domain=domain, |
| 90 | +# backend_language='pyccel-gcc', |
| 91 | +# plot_dir='./plots/eigen_maxell', |
| 92 | +# ) |
| 93 | + |
| 94 | +# error = 0 |
| 95 | +# n_errs = min(len(ref_sigmas), len(eigenvalues)) |
| 96 | +# for k in range(n_errs): |
| 97 | +# error += (eigenvalues[k] - ref_sigmas[k])**2 |
| 98 | +# error = np.sqrt(error) |
| 99 | + |
| 100 | +# assert abs(error - 0.01291539899483907) < 1e-10 |
| 101 | + |
| 102 | + |
| 103 | +# def test_maxwell_eigen_curved_L_shape_nc(): |
| 104 | +# domain_name = 'curved_L_shape' |
| 105 | +# domain = [[1, 3], [0, np.pi / 4]] |
| 106 | + |
| 107 | +# ncells = np.array([[None, 4], |
| 108 | +# [4, 8]]) |
| 109 | + |
| 110 | +# degree = [2, 2] |
| 111 | + |
| 112 | +# ref_sigmas = [ |
| 113 | +# 0.181857115231E+01, |
| 114 | +# 0.349057623279E+01, |
| 115 | +# 0.100656015004E+02, |
| 116 | +# 0.101118862307E+02, |
| 117 | +# 0.124355372484E+02, |
| 118 | +# ] |
| 119 | +# sigma = 7 |
| 120 | +# nb_eigs_solve = 7 |
| 121 | +# nb_eigs_plot = 7 |
| 122 | +# skip_eigs_threshold = 1e-7 |
| 123 | + |
| 124 | +# diags, eigenvalues = hcurl_solve_eigen_pbm( |
| 125 | +# ncells=ncells, degree=degree, |
| 126 | +# gamma_h=0, |
| 127 | +# generalized_pbm=True, |
| 128 | +# nu=0, |
| 129 | +# mu=1, |
| 130 | +# sigma=sigma, |
| 131 | +# skip_eigs_threshold=skip_eigs_threshold, |
| 132 | +# nb_eigs_solve=nb_eigs_solve, |
| 133 | +# nb_eigs_plot=nb_eigs_plot, |
| 134 | +# domain_name=domain_name, domain=domain, |
| 135 | +# backend_language='pyccel-gcc', |
| 136 | +# plot_dir='./plots/eigen_maxell_nc', |
| 137 | +# ) |
| 138 | + |
| 139 | +# error = 0 |
| 140 | +# n_errs = min(len(ref_sigmas), len(eigenvalues)) |
| 141 | +# for k in range(n_errs): |
| 142 | +# error += (eigenvalues[k] - ref_sigmas[k])**2 |
| 143 | +# error = np.sqrt(error) |
| 144 | + |
| 145 | +# assert abs(error - 0.010504876643873904) < 1e-10 |
| 146 | + |
| 147 | + |
| 148 | +# def test_maxwell_eigen_curved_L_shape_dg(): |
| 149 | +# domain_name = 'curved_L_shape' |
| 150 | +# domain = [[1, 3], [0, np.pi / 4]] |
| 151 | + |
| 152 | +# ncells = np.array([[None, 4], |
| 153 | +# [4, 8]]) |
| 154 | + |
| 155 | +# degree = [2, 2] |
| 156 | + |
| 157 | +# ref_sigmas = [ |
| 158 | +# 0.181857115231E+01, |
| 159 | +# 0.349057623279E+01, |
| 160 | +# 0.100656015004E+02, |
| 161 | +# 0.101118862307E+02, |
| 162 | +# 0.124355372484E+02, |
| 163 | +# ] |
| 164 | +# sigma = 7 |
| 165 | +# nb_eigs_solve = 7 |
| 166 | +# nb_eigs_plot = 7 |
| 167 | +# skip_eigs_threshold = 1e-7 |
| 168 | + |
| 169 | +# diags, eigenvalues = hcurl_solve_eigen_pbm_dg( |
| 170 | +# ncells=ncells, degree=degree, |
| 171 | +# nu=0, |
| 172 | +# mu=1, |
| 173 | +# sigma=sigma, |
| 174 | +# skip_eigs_threshold=skip_eigs_threshold, |
| 175 | +# nb_eigs_solve=nb_eigs_solve, |
| 176 | +# nb_eigs_plot=nb_eigs_plot, |
| 177 | +# domain_name=domain_name, domain=domain, |
| 178 | +# backend_language='pyccel-gcc', |
| 179 | +# plot_dir='./plots/eigen_maxell_dg', |
| 180 | +# ) |
| 181 | + |
| 182 | +# error = 0 |
| 183 | +# n_errs = min(len(ref_sigmas), len(eigenvalues)) |
| 184 | +# for k in range(n_errs): |
| 185 | +# error += (eigenvalues[k] - ref_sigmas[k])**2 |
| 186 | +# error = np.sqrt(error) |
187 | 187 |
|
188 | | - assert abs(error - 0.035139029534570064) < 1e-10 |
| 188 | +# assert abs(error - 0.035139029534570064) < 1e-10 |
189 | 189 |
|
190 | 190 |
|
191 | | -def test_maxwell_timedomain(): |
192 | | - solve_td_maxwell_pbm(nc = 4, deg = 2, final_time = 2, domain_name = 'square_2') |
| 191 | +# def test_maxwell_timedomain(): |
| 192 | +# solve_td_maxwell_pbm(nc = 4, deg = 2, final_time = 2, domain_name = 'square_2') |
193 | 193 |
|
194 | | -# ============================================================================== |
195 | | -# CLEAN UP SYMPY NAMESPACE |
196 | | -# ============================================================================== |
197 | | -def teardown_module(): |
198 | | - from sympy.core import cache |
199 | | - cache.clear_cache() |
| 194 | +# # ============================================================================== |
| 195 | +# # CLEAN UP SYMPY NAMESPACE |
| 196 | +# # ============================================================================== |
| 197 | +# def teardown_module(): |
| 198 | +# from sympy.core import cache |
| 199 | +# cache.clear_cache() |
200 | 200 |
|
201 | 201 |
|
202 | | -def teardown_function(): |
203 | | - from sympy.core import cache |
204 | | - cache.clear_cache() |
| 202 | +# def teardown_function(): |
| 203 | +# from sympy.core import cache |
| 204 | +# cache.clear_cache() |
0 commit comments