Skip to content

Commit 434b325

Browse files
author
Jiachen Li
committed
Update research
1 parent 338fb72 commit 434b325

File tree

2 files changed

+59
-8
lines changed

2 files changed

+59
-8
lines changed

_data/research.yaml

+59-8
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
- title: Safe and Robust Interaction-Aware Decision Making for Human-Robot Interactions
1+
- title: Safe, Efficient, and Robust Decision Making for Human-Robot Interactions
22
# subtitle: a subtitle
33
# group: featured
44
image: research_images/human_robot_interaction.png
@@ -32,13 +32,14 @@
3232
We investigate foundation models and vision language models (VLMs) for robotics and autonomous systems to enhance their reasoning capability and reliability.
3333
For example, inferring the short-term and long-term intentions of traffic participants and understanding the contextual semantics of scenes are the keys to scene understanding and situational awareness of autonomous vehicles.
3434
Moreover, how to enable autonomous agents (e.g., self-driving cars) to explain their reasoning, prediction, and decision making processes to human users (e.g., drivers, passengers) in a human understandable form (e.g., natural language) to build humans’ trust remains largely underexplored.
35-
Therefore, **we created the first multimodal dataset for a new risk object ranking and natural language explanation task in urban scenarios and a rich dataset for intention prediction in autonomous driving, establishing benchmarks for corresponding tasks. Meanwhile, our research introduced novel methods that achieve superior performance on these problems.**<br><br>
35+
Therefore, **we created the first multimodal dataset for a new risk object ranking and natural language explanation task in urban scenarios and a rich dataset for intention prediction in autonomous driving, establishing benchmarks for corresponding tasks. Meanwhile, our research introduced novel methods that achieve superior performance on these problems.**
36+
Moreover, we explore effective solutions for complex long-horizon robotic tasks and multi-agent collaborations with multi-modal foundation models. <br><br>
3637
3738
**Related Publications\:** <br>
38-
1. [LOKI: Long Term and Key Intentions for Trajectory Prediction](https://openaccess.thecvf.com/content/ICCV2021/html/Girase_LOKI_Long_Term_and_Key_Intentions_for_Trajectory_Prediction_ICCV_2021_paper.html), ICCV 2021. <br>
39-
2. [Important Object Identification with Semi-Supervised Learning for Autonomous Driving](https://arxiv.org/abs/2203.02634), ICRA 2022. <br>
40-
3. [DRAMA: Joint Risk Localization and Captioning in Driving](https://arxiv.org/abs/2209.10767), WACV 2023. <br>
41-
4. [Rank2Tell: A Multimodal Dataset for Joint Driving Importance Ranking and Reasoning](https://arxiv.org/abs/2309.06597), WACV 2024.
39+
1. [Rank2Tell: A Multimodal Dataset for Joint Driving Importance Ranking and Reasoning](https://arxiv.org/abs/2309.06597), WACV 2024. <br>
40+
2. [DRAMA: Joint Risk Localization and Captioning in Driving](https://arxiv.org/abs/2209.10767), WACV 2023. <br>
41+
3. [Important Object Identification with Semi-Supervised Learning for Autonomous Driving](https://arxiv.org/abs/2203.02634), ICRA 2022. <br>
42+
4. [LOKI: Long Term and Key Intentions for Trajectory Prediction](https://openaccess.thecvf.com/content/ICCV2021/html/Girase_LOKI_Long_Term_and_Key_Intentions_for_Trajectory_Prediction_ICCV_2021_paper.html), ICCV 2021.
4243
# repo: greenelab/lab-website-template
4344
tags:
4445
- Foundation Models
@@ -49,7 +50,7 @@
4950
- Cooperative Planning
5051

5152

52-
- title: Explainable and Generalizable Relational Reasoning and Multi-Agent Interaction Modeling (Social & Physical)
53+
- title: Explainable and Generalizable Relational Reasoning and Multi-Agent Interaction Modeling
5354
# subtitle: a subtitle
5455
# group: featured
5556
image: research_images/Explainable Relational Reasoning.webp
@@ -61,7 +62,7 @@
6162
**We also proposed a physics-guided relational learning approach for physical dynamics modeling.**<br><br>
6263
6364
**Related Publications\:** <br>
64-
1. [Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation](https://arxiv.org/abs/2401.12275), submitted to IEEE Transactions on Robotics (T-RO). <br>
65+
1. [Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation](https://arxiv.org/abs/2401.12275), submitted to IEEE Transactions on Robotics (T-RO), under review. <br>
6566
2. [Grouptron: Dynamic Multi-Scale Graph Convolutional Networks for Group-Aware Crowd Trajectory Forecasting](https://arxiv.org/abs/2109.14128), ICRA 2022. <br>
6667
3. [Learning Physical Dynamics with Subequivariant Graph Neural Networks](https://proceedings.neurips.cc/paper_files/paper/2022/hash/a845fdc3f87751710218718adb634fe7-Abstract-Conference.html), NeurIPS 2022. <br>
6768
4. [Interaction Modeling with Multiplex Attention](https://proceedings.neurips.cc/paper_files/paper/2022/hash/7e6361a5d73a8fab093dd8453e0b106f-Abstract-Conference.html), NeurIPS 2022. <br>
@@ -83,6 +84,56 @@
8384

8485

8586

87+
- title: Generalizable and Diverse Trajectory and Occupancy Prediction for Autonomous Driving
88+
# subtitle: a subtitle
89+
# group: featured
90+
image: research_images/trajectory_occupancy_prediction.png
91+
# link: https://github.com/
92+
description: |
93+
We <br><br>
94+
95+
**Related Publications\:** <br>
96+
1. [CMP: Cooperative Motion Prediction with Multi-Agent Communication](https://arxiv.org/abs/2403.17916), submitted to IEEE Robotics and Automation Letters (RA-L), under review. <br>
97+
2. [Adaptive Prediction Ensemble: Improving Out-of-Distribution Generalization of Motion Forecasting](https://arxiv.org/abs/2407.09475), submitted to IEEE Robotics and Automation Letters (RA-L), under review. <br>
98+
3. [Self-Supervised Multi-Future Occupancy Forecasting for Autonomous Driving](https://arxiv.org/abs/2407.21126), submitted to IEEE Robotics and Automation Letters (RA-L), under review. <br>
99+
4. [Scene Informer: Anchor-based Occlusion Inference and Trajectory Prediction in Partially Observable Environments](https://arxiv.org/abs/2309.13893), ICRA 2024. <br>
100+
5. [Predicting Future Spatiotemporal Occupancy Grids with Semantics for Autonomous Driving](https://arxiv.org/abs/2310.01723), IV 2024. <br>
101+
6. [Dynamics-Aware Spatiotemporal Occupancy Prediction in Urban Environments](https://arxiv.org/abs/2209.13172), IROS 2022. <br>
102+
103+
104+
# repo: greenelab/lab-website-template
105+
tags:
106+
- Trajectory Prediction
107+
- Occupancy Prediction
108+
- Occlusion Inference
109+
- Autonomous Driving
110+
111+
112+
113+
- title: Human Intention and Motion Prediction for Human-Robot Interactions
114+
# subtitle: a subtitle
115+
# group: featured
116+
image: research_images/trajectory_occupancy_prediction.png
117+
# link: https://github.com/
118+
description: |
119+
We <br><br>
120+
121+
**Related Publications\:** <br>
122+
1. [CMP: Cooperative Motion Prediction with Multi-Agent Communication](https://arxiv.org/abs/2403.17916), submitted to IEEE Robotics and Automation Letters (RA-L), under review. <br>
123+
2. [Adaptive Prediction Ensemble: Improving Out-of-Distribution Generalization of Motion Forecasting](https://arxiv.org/abs/2407.09475), submitted to IEEE Robotics and Automation Letters (RA-L), under review. <br>
124+
3. [Self-Supervised Multi-Future Occupancy Forecasting for Autonomous Driving](https://arxiv.org/abs/2407.21126), submitted to IEEE Robotics and Automation Letters (RA-L), under review. <br>
125+
4. [Scene Informer: Anchor-based Occlusion Inference and Trajectory Prediction in Partially Observable Environments](https://arxiv.org/abs/2309.13893), ICRA 2024. <br>
126+
5. [Predicting Future Spatiotemporal Occupancy Grids with Semantics for Autonomous Driving](https://arxiv.org/abs/2310.01723), IV 2024. <br>
127+
6. [Dynamics-Aware Spatiotemporal Occupancy Prediction in Urban Environments](https://arxiv.org/abs/2209.13172), IROS 2022. <br>
128+
129+
130+
# repo: greenelab/lab-website-template
131+
tags:
132+
- Trajectory Prediction
133+
- Occupancy Prediction
134+
- Occlusion Inference
135+
- Autonomous Driving
136+
86137

87138

88139

Loading

0 commit comments

Comments
 (0)