-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest-pipeline-demo.R
364 lines (342 loc) · 12.5 KB
/
test-pipeline-demo.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
library(testthat)
library(PeakSegPipeline)
library(data.table)
context("demo")
download.to <- function
(u, f, writeFun=if(grepl("bigWig", f))writeBin else writeLines){
if(!file.exists(f)){
require(httr)
f.dir <- dirname(f)
dir.create(f.dir, showWarnings=FALSE, recursive=TRUE)
request <- GET(u)
stop_for_status(request)
writeFun(content(request), f)
}
}
## Download bigWig files from github.
bigWig.part.vec <- c(
"Input/MS010302",
"bcell/MS010302",
"Input/MS002202",
"kidney/MS002202",
"Input/MS026601",
"bcell/MS026601",
"Input/MS002201",
"kidney/MS002201"
)
label.txt <- "
chr10:33,061,897-33,162,814 noPeaks
chr10:33,456,000-33,484,755 peakStart kidney
chr10:33,597,317-33,635,209 peakEnd kidney
chr10:33,662,034-33,974,942 noPeaks
chr10:35,182,820-35,261,001 noPeaks
chr10:35,261,418-35,314,654 peakStart bcell kidney
chr10:35,343,031-35,398,459 peakEnd bcell kidney
chr10:38,041,023-38,102,554 noPeaks
chr10:38,296,008-38,307,179 peakStart bcell kidney
chr10:38,379,045-38,391,967 peakStart bcell kidney
chr10:38,404,899-38,412,089 peakEnd bcell kidney
chr10:38,413,073-38,444,133 noPeaks
chr10:38,585,584-38,643,190 noPeaks
chr10:38,643,191-38,650,766 peakStart bcell kidney
chr10:38,731,066-38,750,574 peakEnd bcell kidney
chr10:38,750,960-38,790,663 noPeaks
chr10:38,807,475-38,815,200 noPeaks
chr10:38,815,201-38,816,355 peakStart bcell kidney Input
chr10:38,818,377-38,819,342 peakEnd bcell kidney Input
chr10:39,098,319-39,111,384 noPeaks
chr10:39,125,134-39,125,550 peakStart bcell kidney Input
chr10:39,125,594-39,126,266 peakEnd bcell kidney Input
chr10:39,126,866-39,140,858 noPeaks
"
test.data.dir <- file.path(Sys.getenv("HOME"), "PeakSegPipeline-test")
##test.data.dir <- file.path(tempdir(), "PeakSegPipeline-test")
non.integer.dir <- file.path(test.data.dir, "non-integer")
demo.dir <- file.path(test.data.dir, "demo")
chrom.sizes.file <- tempfile()
chrom.sizes <- data.table(chrom="chr10", bases=128616069)
fwrite(chrom.sizes, chrom.sizes.file, sep="\t", col.names=FALSE)
repos.url <- "https://raw.githubusercontent.com/tdhock/input-test-data/master/"
for(bigWig.part in bigWig.part.vec){
suffix <- ifelse(grepl("MS026601|MS002201", bigWig.part), "/", "_/")
bigWig.file <- file.path(
non.integer.dir, "samples",
sub("/", suffix, bigWig.part), "coverage.bigWig")
bigWig.url <- paste0(repos.url, bigWig.part, ".bigwig")
download.to(bigWig.url, bigWig.file)
demo.bigWig <- sub("non-integer", "demo", bigWig.file)
if(!file.exists(demo.bigWig)){
dir.create(dirname(demo.bigWig), showWarnings=FALSE, recursive=TRUE)
bw.dt <- readBigWig(bigWig.file, "chr10", 0, 128616069)
out.dt <- data.table(chrom="chr10", bw.dt)
demo.bedGraph <- sub("bigWig", "bedGraph", demo.bigWig)
fwrite(out.dt, demo.bedGraph, sep="\t", col.names=FALSE)
bedGraphToBigWig(demo.bedGraph, chrom.sizes.file, demo.bigWig)
unlink(demo.bedGraph)
}
}
for(set.dir in c(demo.dir)){
labels.file <- file.path(set.dir, "labels", "some_labels.txt")
dir.create(dirname(labels.file), showWarnings=FALSE, recursive=TRUE)
writeLines(label.txt, labels.file)
problems.bed <- file.path(set.dir, "problems.bed")
unlink(problems.bed)
cat("chr10 60000 17974675
chr10 18024675 38818835
chr10 38868835 39154935
chr10 42746000 46426964
chr10 47529169 47792476
chr10 47892476 48055707
chr10 48105707 49095536
chr10 49195536 51137410
chr10 51187410 51398845
chr10 51448845 125869472
chr10 125919472 128616069
", file=problems.bed)
}
## Pipeline should run to completion for integer count data.
system(paste("bigWigToBedGraph", demo.bigWig, "/dev/stdout|head"))
index.html <- file.path(demo.dir, "index.html")
unlink(index.html)
jobs_create_run(demo.dir)
test_that("index.html is created", {
expect_true(file.exists(index.html))
})
if(interactive()){
## Post-processing to explain the output.
joint.problems.dt <- fread(paste("cat", file.path(
demo.dir, "problems", "*", "jointProblems.bed")))
setnames(joint.problems.dt, c("chrom", "problemStart", "problemEnd"))
peaks.glob <- file.path(
demo.dir, "problems", "*", "jointProblems", "*", "peaks.bed")
##Sys.glob(peaks.glob)
joint.peaks.dt <- fread(paste("cat", peaks.glob))
setnames(
joint.peaks.dt,
c("chrom", "peakStart", "peakEnd", "sample.path", "mean"))
joint.peaks.dt[, sample.id := sub(".*/", "", sample.path)]
joint.peaks.dt[, sample.group := sub("/.*", "", sample.path)]
chunks.dt <- fread(paste("cat", file.path(
demo.dir, "problems", "*", "chunks", "*", "chunk.bed")))
setnames(chunks.dt, c("chrom", "chunkStart", "chunkEnd"))
all.problems <- fread(file.path(demo.dir, "problems.bed"))
setnames(all.problems, c("chrom", "problemStart", "problemEnd"))
data.start <- min(chunks.dt$chunkStart)
data.end <- max(chunks.dt$chunkEnd)
two.problems <- all.problems[!(
problemEnd < data.start |
data.end < problemStart),]
both.problems <- rbind(
data.table(two.problems, y="separate problems"),
data.table(joint.problems.dt, y="joint problems"))
limits.list <- list(
c(34, 35),
c(35, 36),
c(36, 37),
c(37, 38),
c(38, 39))
limits.dt <- data.table(matrix(unlist(limits.list)*1e6, ncol=2, byrow=TRUE))
setnames(limits.dt, c("plotStart", "plotEnd"))
limits.dt$y <- "plots in un-labeled regions"
labels.bed.vec <- Sys.glob(file.path(
demo.dir, "samples", "*", "*", "labels.bed"))
all.labels.list <- list()
for(labels.bed in labels.bed.vec){
sample.dir <- dirname(labels.bed)
sample.id <- basename(sample.dir)
group.dir <- dirname(sample.dir)
sample.group <- basename(group.dir)
sample.labels <- fread(labels.bed)
setnames(sample.labels, c("chrom", "labelStart", "labelEnd", "annotation"))
all.labels.list[[labels.bed]] <- data.table(
sample.id, sample.group, sample.labels)
}
all.labels <- do.call(rbind, all.labels.list)
input.labels <- all.labels[sample.group=="Input", list(
prop.noPeaks=mean(annotation=="noPeaks")
), by=.(labelStart, labelEnd)]
setkey(input.labels, labelStart, labelEnd)
input.pred <- joint.peaks.dt[, list(
n.Input=sum(sample.group=="Input")
), by=.(peakStart, peakEnd)]
setkey(input.pred, peakStart, peakEnd)
labeled.input <- foverlaps(input.pred, input.labels, nomatch=0L)
thresh.dt <- labeled.input[, data.table(WeightedROC(
n.Input, ifelse(prop.noPeaks==0, 1, -1)))]
thresh.best <- thresh.dt[which.min(FP+FN),]
## threshold is smallest n.Input that is classified as non-specific.
setkey(joint.peaks.dt, peakStart, peakEnd)
peaks.with.counts <- input.pred[joint.peaks.dt]
peaks.with.counts[, specificity := ifelse(
n.Input >= thresh.best$threshold, "non-specific", "specific")]
gg <- ggplot()+
coord_cartesian(xlim=c(data.start, data.end)/1e3, expand=TRUE)+
geom_segment(aes(
problemStart/1e3, y,
xend=problemEnd/1e3, yend=y),
color="blue",
data=both.problems)+
geom_point(aes(
problemStart/1e3, y),
color="blue",
data=both.problems)+
geom_tallrect(aes(
xmin=chunkStart/1e3, xmax=chunkEnd/1e3),
alpha=0.1,
data=chunks.dt)+
geom_segment(aes(
plotStart/1e3, y,
xend=plotEnd/1e3, yend=y),
data=limits.dt)+
geom_point(aes(
plotStart/1e3, y),
data=limits.dt)+
geom_point(aes(
peakStart/1e3, sample.path, color=specificity),
data=peaks.with.counts)+
geom_segment(aes(
peakStart/1e3, sample.path,
xend=peakEnd/1e3, yend=sample.path, color=specificity),
data=peaks.with.counts)+
ylab("")+
xlab("position on chr10 (kb = kilo bases)")+
scale_color_manual(values=c("non-specific"="red", specific="deepskyblue"))
png(file.path(demo.dir, "figure-demo-overview.png"), res=100, h=200, w=1000)
print(gg)
dev.off()
coverage.bigWig.vec <- Sys.glob(file.path(
demo.dir, "samples", "*", "*", "coverage.bigWig"))
ann.colors <-
c(noPeaks="#f6f4bf",
peakStart="#ffafaf",
peakEnd="#ff4c4c",
peaks="#a445ee")
img.list <- list()
for(limit.i in seq_along(limits.list)){
limit.vec <- limits.list[[limit.i]]*1e6
print(limit.vec)
coverage.list <- list()
for(coverage.bigWig in coverage.bigWig.vec){
sample.dir <- dirname(coverage.bigWig)
sample.id <- basename(sample.dir)
group.dir <- dirname(sample.dir)
sample.group <- basename(group.dir)
cmd <- sprintf(
"bigWigToBedGraph -chrom=chr10 -start=%d -end=%d %s /dev/stdout",
limit.vec[1], limit.vec[2],
coverage.bigWig)
sample.coverage <- fread(cmd)
setnames(sample.coverage, c("chrom", "chromStart", "chromEnd", "count"))
coverage.list[[coverage.bigWig]] <- data.table(
sample.id, sample.group, sample.coverage)
}
coverage <- do.call(rbind, coverage.list)
show.peaks <- joint.peaks.dt[
!(peakEnd < limit.vec[1] | limit.vec[2] < peakStart),]
show.labels <- all.labels[
!(labelEnd < limit.vec[1] | limit.vec[2] < labelStart),]
gg <- ggplot()+
theme_bw()+
theme(panel.margin=grid::unit(0, "lines"))+
facet_grid(sample.group + sample.id ~ ., scales="free")+
geom_tallrect(aes(
xmin=labelStart/1e3,
xmax=labelEnd/1e3,
fill=annotation),
alpha=0.5,
data=show.labels)+
scale_fill_manual(values=ann.colors)+
scale_y_continuous(
"aligned read coverage",
breaks=function(limits){
lim <- floor(limits[2])
if(lim==0){
Inf
}else{
lim
}
})+
scale_x_continuous(paste(
"position on",
coverage$chrom[1],
"(kb = kilo bases)"))+
geom_step(aes(
chromStart/1e3, count),
color="grey50",
data=coverage)+
coord_cartesian(xlim=limit.vec/1e3, expand=FALSE)
if(nrow(show.peaks)){
gg <- gg+
geom_point(aes(
peakStart/1e3, 0),
color="deepskyblue",
size=3,
data=show.peaks)+
geom_segment(aes(
peakStart/1e3, 0,
xend=peakEnd/1e3, yend=0),
color="deepskyblue",
size=3,
data=show.peaks)
}
f <- sprintf(
"%s/figure-demo-%d-%d.png",
demo.dir,
limit.vec[1]/1e6, limit.vec[2]/1e6)
png(f, res=100, width=1000, height=600)
print(gg)
dev.off()
img.list[[limit.i]] <- sprintf(
'<p><img src="%s" /></p>',
basename(f))
}
index.lines <- readLines(index.html)
new.index.lines <- c('
<h2>Explanation of results below</h2>
<ul>
<li>
PeakSegFPOP + PeakSegJoint were trained using four labeled samples
(two H3K36me3 samples, two Input samples). These labeled samples
have colored rectangular labels/annotations in the plots below,
which indicate genomic regions where a scientist has visually
determined presence or absence of peaks.
</li>
<li>
The black peak predictions represent the PeakSegFPOP model, which
predicts peaks separately for each sample. These peaks do not
occur in the exact same positions across samples, but are clustered
together to define "joint problems" where the PeakSegJoint model
is fit to all samples.
</li>
<li>
The blue peak predictions represent the PeakSegJoint model, which
predicts peaks separately for each genomic region, but jointly
across all samples. These peaks occur in the exact same positions
across samples, and are reported in the final output files
(<a href="peaks_summary.tsv">peaks_summary.tsv</a>,
<a href="peaks_matrix.tsv">peaks_matrix.tsv</a>).
</li>
<li>
The models were used to predict peaks in eight samples,
four of which have no
labels. The un-labeled samples appear without any colored
rectangles in the plots below, and can be used for evaluating the
accuracy of the learned model. For example, consider the genomic region below:</li>
<img src="problems/chr10:18024675-38818835/chunks/chr10:33061897-33974942/figure-predictions.png" />
<li>On the left, the model predicted a common peak in all bcell and kidney samples
(even though this peak was not labeled in any of the samples).</li>
<li>In the middle, the model predicted a common peak in the two kidney samples,
and no corresponding peak in the two bcell samples
(only one of the two bcell samples was labeled as having noPeaks,
and only one of the two kidney samples was labeled as having a peakStart and peakEnd).</li>
</ul>
', index.lines, '
<h2>More plots</h2>
<p>The plots below are usually not included in the output,
but we added them here, so you can see peak predictions
at all genomic regions that have coverage in this data set.</p>
<img src="figure-demo-overview.png" />
', unlist(img.list))
writeLines(new.index.lines, index.html)
browseURL(index.html)
}