Skip to content

Commit 760992a

Browse files
committed
rename AC-inference to AC-discovery
1 parent f31fc3d commit 760992a

File tree

2 files changed

+19
-16
lines changed

2 files changed

+19
-16
lines changed
File renamed without changes.

examples/AC-inference.py

Lines changed: 19 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -13,35 +13,36 @@
1313
# Put params into a list
1414
params = [tf.Variable(0.0, dtype=tf.float32), tf.Variable(0.0, dtype=tf.float32)]
1515

16+
1617
# Define f_model, note the `vars` argument. Inputs must follow this order!
17-
def f_model(u_model, vars, x, t):
18-
u = u_model(tf.concat([x,t],1))
18+
def f_model(u_model, var, x, t):
19+
u = u_model(tf.concat([x, t], 1))
1920
u_x = tf.gradients(u, x)
2021
u_xx = tf.gradients(u_x, x)
21-
u_t = tf.gradients(u,t)
22-
c1 = vars[0] # tunable param 1
23-
c2 = vars[1] # tunable param 2
24-
f_u = u_t - c1*u_xx + c2*u*u*u - c2*u
22+
u_t = tf.gradients(u, t)
23+
c1 = var[0] # tunable param 1
24+
c2 = var[1] # tunable param 2
25+
f_u = u_t - c1 * u_xx + c2 * u * u * u - c2 * u
2526
return f_u
2627

2728

2829
# Import data, same data as Raissi et al
2930

3031
data = scipy.io.loadmat('AC.mat')
3132

32-
t = data['tt'].flatten()[:,None]
33-
x = data['x'].flatten()[:,None]
33+
t = data['tt'].flatten()[:, None]
34+
x = data['x'].flatten()[:, None]
3435
Exact = data['uu']
3536
Exact_u = np.real(Exact)
3637

3738
# define MLP depth and layer width
3839
layer_sizes = [2, 128, 128, 128, 128, 1]
3940

4041
# generate all combinations of x and t
41-
X, T = np.meshgrid(x,t)
42+
X, T = np.meshgrid(x, t)
4243

43-
X_star = np.hstack((X.flatten()[:,None], T.flatten()[:,None]))
44-
u_star = Exact_u.T.flatten()[:,None]
44+
X_star = np.hstack((X.flatten()[:, None], T.flatten()[:, None]))
45+
u_star = Exact_u.T.flatten()[:, None]
4546

4647
x = X_star[:, 0:1]
4748
t = X_star[:, 1:2]
@@ -50,16 +51,18 @@ def f_model(u_model, vars, x, t):
5051
# append to a list for input to model.fit
5152
X = [x, t]
5253

53-
#define col_weights for SA discovery model
54+
# define col_weights for SA discovery model
5455
col_weights = tf.Variable(tf.random.uniform([np.shape(x)[0], 1]))
5556

5657
# initialize, compile, train model
5758
model = DiscoveryModel()
58-
model.compile(layer_sizes, f_model, X, u_star, params, col_weights=col_weights) # baseline approach can be done by simply removing the col_weights arg
59-
model.tf_optimizer_weights = tf.keras.optimizers.Adam(lr=0.005, beta_1=.95) # an example as to how one could modify an optimizer, in this case the col_weights optimizer
59+
model.compile(layer_sizes, f_model, X, u_star, params,
60+
col_weights=col_weights) # baseline approach can be done by simply removing the col_weights arg
61+
model.tf_optimizer_weights = tf.keras.optimizers.Adam(lr=0.005,
62+
beta_1=.95) # an example as to how one could modify an optimizer, in this case the col_weights optimizer
6063

6164
# train loop
62-
model.fit(tf_iter = 10000)
65+
model.fit(tf_iter=10000)
6366

6467
# doesnt work quite yet
65-
tdq.plotting.plot_weights(model, scale = 10.0)
68+
tdq.plotting.plot_weights(model, scale=10.0)

0 commit comments

Comments
 (0)