Skip to content

Commit 789313b

Browse files
No public description
PiperOrigin-RevId: 732957949
1 parent 8a492a2 commit 789313b

File tree

2 files changed

+16
-8
lines changed

2 files changed

+16
-8
lines changed

Diff for: official/projects/waste_identification_ml/README.md

+14-7
Original file line numberDiff line numberDiff line change
@@ -28,13 +28,12 @@ and modeling solutions for TensorFlow users.
2828

2929
## Model paths in GCP buckets
3030

31-
### 3 Model Strategy
31+
### 1 Model Strategy (latest model)
32+
### Single unified model that performs material type and material form detections
3233

33-
| Model categories | Model backbone | Model type | GCP bucket path |
34+
Model categories | Model backbone | Model type | GCP bucket path |
3435
| ------ | ------ | ----- | ------ |
35-
| Material Model | Resnet | saved model & TFLite | [click here](https://storage.googleapis.com/tf_model_garden/vision/waste_identification_ml/material_model.zip) |
36-
| Material Form Model | Resnet | saved model & TFLite | [click here](https://storage.googleapis.com/tf_model_garden/vision/waste_identification_ml/material_form_model.zip) |
37-
|Plastic Model | Resnet | saved model & TFLite | [click here](https://storage.googleapis.com/tf_model_garden/vision/waste_identification_ml/plastic_types_model.zip) |
36+
Material Type & Form | Resnet | saved model | [click here](https://storage.googleapis.com/tf_model_garden/vision/waste_identification_ml/Jan2025_ver2_merged_1024_1024.zip)
3837

3938
### 2 Model Strategy
4039
### Combines plastic type and material type identifications into a unified model
@@ -49,6 +48,14 @@ Material Form Model V2 | Resnet | saved model | [click here](https://storage.goo
4948
Material Type Model V2| MobileNet | saved model | [click here](https://storage.googleapis.com/tf_model_garden/vision/waste_identification_ml/mobilenet_material.zip)
5049
Material Form Model V2| MobileNet | saved model | [click here](https://storage.googleapis.com/tf_model_garden/vision/waste_identification_ml/mobilenet_material_form.zip)
5150

51+
### 3 Model Strategy
52+
53+
| Model categories | Model backbone | Model type | GCP bucket path |
54+
| ------ | ------ | ----- | ------ |
55+
| Material Model | Resnet | saved model & TFLite | [click here](https://storage.googleapis.com/tf_model_garden/vision/waste_identification_ml/material_model.zip) |
56+
| Material Form Model | Resnet | saved model & TFLite | [click here](https://storage.googleapis.com/tf_model_garden/vision/waste_identification_ml/material_form_model.zip) |
57+
|Plastic Model | Resnet | saved model & TFLite | [click here](https://storage.googleapis.com/tf_model_garden/vision/waste_identification_ml/plastic_types_model.zip) |
58+
5259
## Authors and Maintainers
53-
- Umair Sabir
54-
- Sujit Sanjeev
60+
Umair Sabir
61+
Sujit Sanjeev

Diff for: official/projects/waste_identification_ml/fine_tuning/README.md

+2-1
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,8 @@
1313
5. Install the following libraries
1414
`pip install tensorflow[and-cuda] tf-models-official`
1515
6. Move training data in TFRecord format to a GCP bucket, or into the VM
16-
instance.
16+
instance. Refer to scripts in the pre_processing directory for creating
17+
training data in TFRecord format.
1718
7. Move the configuration file for model training into the VM. The configuration
1819
file contains all the parameters and path to datasets. A sample
1920
configuration file `config.yaml` has been provided for GPU training, and

0 commit comments

Comments
 (0)